Journal Home > Volume 15 , Issue 2

Amorphous carbon derived from biomass unusually combines the merits of large specific surface area and abundant micropores, offering massive anchoring points for ion adsorption in electrolyte. Nevertheless, the short-range ordered structure in amorphous carbon hinders the fast electron transfer. Conversely, graphitic carbon with long-range ordered structure is beneficial for electron transfer. Thus, a low-cost strategy is required to marry hierarchical porous structure with long-range ordered structure, resulting in a long/short-range interconnected porous carbon and then leading to fast ion and electron transfer. Herein, we modified the solid-phase conversion process of biomass by employing the features of liquid-phase carbonization for petroleum asphalt. With the assistance of asphalt, the large specific surface area (> 2,000 m2·g-1), high ratio of mesopores (ca. 60%) together with long-range ordered structure are in-situ created in as-made porous carbon. Thanks to the well configured structure in small scale, the as-made co-converted carbon can be operated in high-viscosity EMIMBF4 electrolyte with a superior capacitance (315 F·g-1@1 A·g-1). Besides, the as-assembled symmetric supercapacitor can deliver a super-high specific energy of 174 Wh·kg-1@2.0 kW·kg-1. This work provides a new version for designing highly porous biomass-derived carbon with long/short-range alternating structure at molecular level.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A long/short-range interconnected carbon with well-defined mesopore for high-energy-density supercapacitors

Show Author's information Yuanyang XieChang Yu( )Wei GuoLin NiZhao WangJinhe YuLe YangRong FuKunlun LiuJieshan Qiu( )
State Key Lab of Fine Chemicals School of Chemical EngineeringLiaoning Key Lab for Energy Materials and Chemical EngineeringDalian University of TechnologyDalian 116024 China

Abstract

Amorphous carbon derived from biomass unusually combines the merits of large specific surface area and abundant micropores, offering massive anchoring points for ion adsorption in electrolyte. Nevertheless, the short-range ordered structure in amorphous carbon hinders the fast electron transfer. Conversely, graphitic carbon with long-range ordered structure is beneficial for electron transfer. Thus, a low-cost strategy is required to marry hierarchical porous structure with long-range ordered structure, resulting in a long/short-range interconnected porous carbon and then leading to fast ion and electron transfer. Herein, we modified the solid-phase conversion process of biomass by employing the features of liquid-phase carbonization for petroleum asphalt. With the assistance of asphalt, the large specific surface area (> 2,000 m2·g-1), high ratio of mesopores (ca. 60%) together with long-range ordered structure are in-situ created in as-made porous carbon. Thanks to the well configured structure in small scale, the as-made co-converted carbon can be operated in high-viscosity EMIMBF4 electrolyte with a superior capacitance (315 F·g-1@1 A·g-1). Besides, the as-assembled symmetric supercapacitor can deliver a super-high specific energy of 174 Wh·kg-1@2.0 kW·kg-1. This work provides a new version for designing highly porous biomass-derived carbon with long/short-range alternating structure at molecular level.

Keywords: hierarchical porous structure, supercapacitors, long/short-range interconnected porous carbon, specific energy/power

References(46)

1

Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1702545.

2

Chen, L.; Lian, C.; Jiang, H.; Chen, L. X.; Yan, J.; Liu, H. L.; Li, C. Z. Dual-conductive N, S co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor. Chem. Eng. Sci. 2020, 217, 115496.

3

Sevilla, M.; Diez, N.; Ferrero, G. A.; Fuertes, A. B. Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Mater. 2019, 18, 356–365.

4

Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

5

Long, C. L.; Qi, D. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014, 24, 3953–3961.

6

Cheng, H. Y.; Meng, J. K.; Wu, G.; Chen, S. Hierarchical micro-mesoporous carbon-framework-based hybrid nanofibres for high-density capacitive energy storage. Angew. Chem., Int. Ed. 2019, 58, 17465–17473.

7

Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987.

8

Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

9

Ma, H. Y.; Chen, H. W.; Wu, M. M.; Chi, F. Y.; Liu, F.; Bai, J. X.; Cheng, H. H.; Li, C.; Qu, L. T. Maximization of spatial charge density: An approach to ultrahigh energy density of capacitive charge storage. Angew. Chem., Int. Ed. 2020, 59, 14541–14549.

10

Li, C.; Zhang, X.; Wang, K.; Sun, X. Z.; Liu, G. H.; Li, J. T.; Tian, H. F.; Li, J. Q.; Ma, Y. W. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv. Mater. 2017, 29, 1604690.

11

Chang, P. P.; Matsumura, K.; Zhang, J. Z.; Qi, J.; Wang, C. Y.; Kinumoto, T.; Tsumura, T.; Chen, M. M.; Toyoda, M. 2D porous carbon nanosheets constructed using few-layer graphene sheets by a "medium-up" strategy for ultrahigh power-output EDLCs. J. Mater. Chem. A 2018, 6, 10331–10339.

12

Wang, J.; Tang, J.; Xu, Y. L.; Ding, B.; Chang, Z.; Wang, Y.; Hao, X. D.; Dou, H.; Kim, J. H.; Zhang, X. G. et al. Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 2016, 28, 232–240.

13

Gong, Y. N.; Li, D. L.; Luo, C. Z.; Fu, Q.; Pan C X. . Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017, 19, 4132–4140.

14

Guan, T.; Li, K.; Zhao, J.; Zhao, R.; Zhang, G.; Zhang, D.; Wang, J. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 15869–15878.

15

Wang, L. J.; El-Kady, M. F.; Dubin, S.; Hwang, J. Y.; Shao, Y. L.; Marsh, K.; Mcverry, B.; Kowal, M. D.; Mousavi, M. F.; Kaner, R. B. Flash converted graphene for ultra-high power supercapacitors. Adv. Energy Mater. 2015, 5, 1500786.

16

Zhu, X. Q.; Yu, S.; Xu, K. T.; Zhang, Y.; Zhang, L. M.; Lou, G. B.; Wu, Y. T.; Zhu, E. H.; Chen, H.; Shen, Z. H. et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 2018, 181, 36–45.

17

Chen, C.; Yu, D. F.; Zhao, G. Y.; Du, B. S.; Tang, W.; Sun, L.; Sun, Y.; Besenbacher, F.; Yu, M. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 2016, 27, 377–389.

18

Long, C. L.; Chen, X.; Jiang, L. L.; Zhi, L. J.; Fan, Z. J. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 2015, 12, 141–151.

19

Wu, X. L.; Jiang, L. L.; Long, C. L.; Fan, Z. J. From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy 2015, 13, 527–536.

20

Jiang, F.; Yao, Y. G.; Natarajan, B.; Yang, C. P.; Gao, T. T.; Xie, H.; Wang, Y. L.; Xu, L.; Chen, Y. K.; Gilman, J. et al. Ultrahigh-temperature conversion of biomass to highly conductive graphitic carbon. Carbon 2019, 144, 241–248.

21

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today. 2019, 23, 87–104.

22

Zhang, R. P.; Li, W. C.; Hao, G. P.; Lu, A. H. Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons. Nano Res. 2021, DOI: 10.1007/s12274-021-3425-9

23

Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Qiu, J. S. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 2014, 70, 130–141.

24

Rey-Raap, N.; Enterría M.; Martins, J. I.; Pereira, M. F. R.; Figueiredo, J. L. Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications. ACS Appl. Mater. Interfaces. 2019, 11, 6066–6077.

25

Pan, Z. H.; Liu, M. N.; Yang, J.; Qiu, Y. C.; Li, W. F.; Xu, Y.; Zhang, X. Y.; Zhang, Y. G. High electroactive material loading on a carbon nanotube@3D graphene aerogel for High-performance flexible all-solid-state asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1701122.

26

Guardia, L.; Suárez, L.; Querejeta, N.; Vretenár, V.; Kotrusz, P.; Skákalová, V.; Centeno, T. A. Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors. Electrochim. Acta 2019, 298, 910–917.

27

Xiong, C. L.; Zou, Y. B.; Peng, Z. Y.; Zhong, W. B. Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors. Nanoscale 2019, 11, 7304–7316.

28

Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M. D.; Qiu, J. S. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 2015, 5, 1401761.

29

Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

30

Shang, T. X.; Xu, Y.; Li, P.; Han, J. W.; Wu, Z. T.; Tao, Y.; Yang, Q. H. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 2020, 70, 104531.

31

Hérou, S.; Ribadeneyra, M. C.; Schlee, P.; Luo, H.; Tanase, L. C.; Roβberg, C.; Titirici, M. The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors. J. Energy Chem. 2021, 53, 36–48.

32

Cho, K. G.; Kim, H. S.; Jang, S. S.; Kyung, H.; Kang, M. S.; Lee, K. H.; Yoo, W. C. Optimizing electrochemically active surfaces of carbonaceous electrodes for ionogel based supercapacitors. Adv. Funct. Mater. 2020, 30, 2002053.

33

Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555.

34

Ghosh, S.; Barg, S.; Jeong, S. M.; Ostrikov, K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 2020, 10, 2001239.

35

He, Y. T.; Zhang, Y. H.; Li, X. F.; Lv, Z.; Wang, X. J.; Liu, Z. G.; Huang, X. Q. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 2018, 282, 618–625.

36

Yan, R. Y.; Antonietti, M.; Oschatz, M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy Mater. 2018, 8, 1800026.

37

Dong, S. A.; He, X. J.; Zhang, H. F.; Xie, X. Y.; Yu, M. X.; Yu, C.; Xiao, N.; Qiu, J. S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960.

38

Zhang, L.; Yang, X.; Zhang, F.; Long, G. K.; Zhang, T. F.; Leng, K.; Zhang, Y. W.; Huang, Y.; Ma, Y. F.; Zhang, M. T. et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 2013, 135, 5921–5929.

39

Deng, X. Y.; Li, J. J.; Zhu, S.; Ma, L. Y.; Zhao, N. Q. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater. 2019, 23, 491–498.

40

Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 2017, 29, 1604569.

41

Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S. et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993–1998.

42

Nomura, K.; Nishihara, H.; Kobayashi, N.; Asada, T.; Kyotani, T. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 2019, 12, 1542–1549.

43

Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Edge-enriched porous graphene nanoribbons for high energy density supercapacitors. J. Mater. Chem. A 2014, 2, 7484–7490.

44

Huo, S. L.; Liu, M. Q.; Wu, L. L.; Liu, M. J.; Xu, M.; Ni, W.; Yan, Y. M. Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. J. Power Sources 2019, 414, 383–392.

45

Song, B.; Zhao, J. X.; Wang, M. J.; Mullavey, J.; Zhu, Y. T.; Geng, Z. S.; Chen, D. C.; Ding, Y.; Moon, K. S.; Liu, M. L. et al. Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application. Nano Energy 2017, 31, 183–193.

46

Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868.

File
12274_2021_3676_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 April 2021
Revised: 10 June 2021
Accepted: 12 June 2021
Published: 28 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 51872035 and 22078052), the Talent Program of Rejuvenation of Liaoning (No. XLYC1807002), and the Innovation Program of Dalian City (No. 2019RJ03).

Return