Journal Home > Volume 14 , Issue 11

To further improve the quantum efficiency of atomically thin transition metal dichalcogenides (TMDs) is crucial for the realization of high-performance optoelectronic applications. To this regard, a few chemical or physical approaches such as superacid treatment, electrical gating, dielectric screening, and laser irradiation have been developed. In particular, the laser irradiation appears to be a more efficient way with good processability and spatial selectivity. However, the underlying mechanism especially about whether chemisorption or physisorption plays a more important role is still debatable. Here, we unravel the mystery of laser irradiation induced photoluminescence enhancement in monolayer WS2 by precisely controlling irradiation time and environment. It is found that the synergetic effect of physisorption and chemisorption is responsible for the photoluminescence enhancement, where the physisorption dominates with more than 74% contribution. The comprehensive understanding of the adsorption mechanism in laser-irradiated TMDs may trigger the potential applications for patterned light source, effective photosensor and ultrathin optical memory.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2

Show Author's information Yuanzheng Li1,§Jiaxu Yan1,§Jinping Chen2Tong Yu1Hang Ren1Xiuling Liu3Weizhen Liu1( )Guochun Yang1Chunxiang Xu2Qiaoliang Bao4( )Yichun Liu1Haiyang Xu1( )
Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
School of Materials Science and Engineering Changchun University of Science and Technology Changchun 130022 China
Department of Materials Science and Engineering ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET) Monash University Wellington Road Clayton VIC 3800 Australia

§ Yuanzheng Li and Jiaxu Yan contributed equally to this work.

Abstract

To further improve the quantum efficiency of atomically thin transition metal dichalcogenides (TMDs) is crucial for the realization of high-performance optoelectronic applications. To this regard, a few chemical or physical approaches such as superacid treatment, electrical gating, dielectric screening, and laser irradiation have been developed. In particular, the laser irradiation appears to be a more efficient way with good processability and spatial selectivity. However, the underlying mechanism especially about whether chemisorption or physisorption plays a more important role is still debatable. Here, we unravel the mystery of laser irradiation induced photoluminescence enhancement in monolayer WS2 by precisely controlling irradiation time and environment. It is found that the synergetic effect of physisorption and chemisorption is responsible for the photoluminescence enhancement, where the physisorption dominates with more than 74% contribution. The comprehensive understanding of the adsorption mechanism in laser-irradiated TMDs may trigger the potential applications for patterned light source, effective photosensor and ultrathin optical memory.

Keywords: photoluminescence, WS2, laser irradiation, chemisorption, physisorption

References(44)

1

Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

2

Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

3

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

4

Sheng, Y. W.; Chen, T. X.; Lu, Y.; Chang, R. J.; Sinha, S.; Warner, J. H. High-performance WS2 monolayer light-emitting tunneling devices using 2D materials grown by chemical vapor deposition. ACS Nano 2019, 13, 4530–4537.

5

Tanoh, A. O. A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; Bretscher, H.; Gauriot, N.; Allardice, J.; Pandya, R.; Fan, Y. et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 2019, 19, 6299–6307.

6

Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

7

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

8

Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect- assisted electron–hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345.

9

Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.

10

Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

11

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

12

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

13

Venkatakrishnan, A.; Chua, H.; Tan, P. X.; Hu, Z. L.; Liu, H. W.; Liu, Y. P.; Carvalho, A.; Lu, J. P.; Sow, C. H. Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano 2017, 11, 713–720.

14

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

15

Sivaram, S. V.; Hanbicki, A. T.; Rosenberger, M. R.; Jernigan, G. G.; Chuang, H. J.; McCreary, K. M.; Jonker, B. T. Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces 2019, 11, 16147–16155.

16

Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

17

Ardekani, H.; Younts, R.; Yu, Y. L.; Cao, L. Y.; Gundogdu, K. Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38240–38246.

18

Lu, J. P.; Carvalho, A.; Chan, X. K.; Liu, H. W.; Liu, B.; Tok, E. S.; Loh, K. P.; Neto, A. H. C.; Sow, C. H. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 2015, 15, 3524–3532.

19

Oh, H. M.; Han, G. H.; Kim, H.; Bae, J. J.; Jeong, M. S.; Lee, Y. H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236.

20

Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408.

21

Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 2015, 9, 4056–4063.

22

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

23

Kozawa, D.; Kumar, R.; Carvalho, A.; Amara, K. K.; Zhao, W. J.; Wang, S. F.; Toh, M.; Ribeiro, R. M.; Neto, A. H. C.; Matsuda, K. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 2014, 5, 4543.

24

Li, Y. Z.; Shi, J.; Chen, H. Y.; Mi, Y.; Du, W. N.; Sui, X. Y.; Jiang, C. X.; Liu, W. Z.; Xu, H. Y.; Liu, X. F. Slow cooling of high-energy C excitons is limited by intervalley-transfer in monolayer MoS2. Laser Photonics Rev. 2019, 13, 1800270.

25

Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S. M.; Lin, Z.; Zhou, C. J.; Perea-López, N.; Elías, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

26

Yang, Y.; Gu, J.; Young, J. L.; Miller, E. M.; Turner, J. A.; Neale, N. R.; Beard, M. C. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 2015, 350, 1061–1065.

27

Parkin, W. M.; Balan, A.; Liang, L. B.; Das, P. M.; Lamparski, M.; Naylor, C. H.; Rodríguez-Manzo, J. A.; Johnson, A. T. C.; Meunier, V.; Drndić, M. Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 2016, 10, 4134–4142.

28

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

29

Cai, H.; Yu, Y. L.; Lin, Y. C.; Puretzky, A. A.; Geohegan, D. B.; Xiao, K. Heterogeneities at multiple length scales in 2D layered materials: From localized defects and dopants to mesoscopic heterostructures. Nano Res. 2021, 14, 1625–1649.

30

Prabhu, S.; Cindrella, L.; Kwon, O. J.; Mohanraju, K. Photoelec­trochemical, photocatalytic and photochromic performance of rGO- TiO2-WO3 composites. Mater. Chem. Phys. 2019, 224, 217–228.

31

Thiyagarajan, K.; Muralidharan, M.; Sivakumar, K. Defects induced magnetism in WO3 and reduced graphene oxide-WO3 nanocomposites. J. Supercond. Novel Magn. 2018, 31, 117–125.

32

Roy, S.; Choi, W.; Jeon, S.; Kim, D. H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y. M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530.

33

Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

34

Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 2628–2635.

35

Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Walker, A. R. H.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991.

36

Chiu, M. H.; Tseng, W. H.; Tang, H. L.; Chang, Y. H.; Chen, C. H.; Hsu, W. T.; Chang, W. H.; Wu, C. I.; Li, L. J. Band alignment of 2D transition metal dichalcogenide heterojunctions. Adv. Funct. Mater. 2017, 27, 1603756.

37

Li, Y. Z.; Liu, W. Z.; Xu, H. Y.; Chen, H. Y.; Ren, H.; Shi, J.; Du, W. N.; Zhang, W.; Feng, Q. S.; Yan, J. X. et al. Unveiling bandgap evolution and carrier redistribution in multilayer WSe2: Enhanced photon emission via heat engineering. Adv. Opt. Mater. 2020, 8, 1901226.

38

Venkatakrishnan, A.; Chua, H.; Tan, P.; Hu, Z.; Liu, H.; Liu, Y.; Carvalho, A.; Lu, J.; Sow, C. H. Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano 2017, 11, 713–720.

39

Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

40

Kresse, G.; J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

41

Paier, J., et al., The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.

42

Perdew, J. P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

43

Shu, H., et al., Defect engineering in MoSe2 for the hydrogen evolution reaction: From point defects to edges. ACS App. Mater. Inter 2017, 9, 42688–42698.

44

Zhang, Y., et al., The role of intrinsic defects in electrocatalytic activity of monolayer VS2 basal planes for the hydrogen evolution reaction. J. Phys. Chem. C 2017, 121, 1530–1536.

File
12274_2021_3667_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 November 2020
Revised: 26 May 2021
Accepted: 09 June 2021
Published: 11 August 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Program of National Natural Science Foundation of China (Nos. 51732003, 51872043, 61604037, 11874104, 12074060, and 12004069), the National Science Fund for Distinguished Young Scholars (No. 52025022), the "111" Project (No. B13013), the National Key Research and Development Program of China (Nos. 2016YFA0201902 and 2019YFB2205100), Fund from Ministry of Education (No. 6141A02033414), Shenzhen Nanshan District Pilotage Team Program (No. LHTD20170006), the China Postdoctoral Science Foundation funded project (Nos. 2020M681025, 2021T140109, and 2021M693905), the Fundamental Research Funds for the Central Universities (Nos. 2412020QD015, 2412019BJ006, 2412021ZD007, 2412021ZD012, and 2412019FZ034), Post­doctoral Science Foundation funded project from Jilin Province (No. 111865005), and the Fund from Jilin Province (Nos. YDZJ202101ZYTS049, YDZJ202101ZYTS041, YDZJ202101ZYTS133, JJKH20211273KJ, JJKH20211274KJ, and 20190103007JH).

Return