Journal Home > Volume 15 , Issue 2

In terms of photoelectrochemical (PEC) hydrogen evolution, substantial challenge still remains regarding the controllable fabrication of quantum dots (QDs)-sensitized photocathodes with enhanced visible-light absorption, efficient charge carrier separation, and directional migration at the electrode interface. In this work, the CdTe/CdSe QDs-sensitized photocathodes were delicately constructed on p-type NiO-coated indium tin oxide (ITO) electrodes by spin-coating approach. The resulting co-sensitized photocathode exhibits a favorable pseudo-Type Ⅱ energetic band alignment that combines the advantages of strong light absorption of constituent QDs as well as the effective and oriented charge separation and migration. Upon green LED light illumination, the photogenerated electrons could be effectively transferred to a tetra-nickel-substituted polyoxometalate catalyst for hydrogen production while photogenerated holes will be scavenged at the NiO/ITO electrode. Under minimally optimized conditions, the pseudo-Type Ⅱ CdTe/CdSe-sensitized photocathode yields a photocurrent density of over 100 μA/cm2 and a Faradaic efficiency of ~ 100%, which is among one of the most efficient QDs-based photocathode systems coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical hydrogen generation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen

Show Author's information Junhao ZhangMo ZhangYuanyuan Dong( )Congcong BaiYeqin FengLe JiaoHongjin Lv( )
MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China

Abstract

In terms of photoelectrochemical (PEC) hydrogen evolution, substantial challenge still remains regarding the controllable fabrication of quantum dots (QDs)-sensitized photocathodes with enhanced visible-light absorption, efficient charge carrier separation, and directional migration at the electrode interface. In this work, the CdTe/CdSe QDs-sensitized photocathodes were delicately constructed on p-type NiO-coated indium tin oxide (ITO) electrodes by spin-coating approach. The resulting co-sensitized photocathode exhibits a favorable pseudo-Type Ⅱ energetic band alignment that combines the advantages of strong light absorption of constituent QDs as well as the effective and oriented charge separation and migration. Upon green LED light illumination, the photogenerated electrons could be effectively transferred to a tetra-nickel-substituted polyoxometalate catalyst for hydrogen production while photogenerated holes will be scavenged at the NiO/ITO electrode. Under minimally optimized conditions, the pseudo-Type Ⅱ CdTe/CdSe-sensitized photocathode yields a photocurrent density of over 100 μA/cm2 and a Faradaic efficiency of ~ 100%, which is among one of the most efficient QDs-based photocathode systems coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical hydrogen generation.

Keywords: hydrogen generation, photoelectrochemical water splitting, polyoxometalates, quantum dots-sensitized photocathode, favorable energetic gradient

References(49)

1

Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. , Int. Ed. 2007, 46, 52–66.

2

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

3

Lv, H. J.; Geletii, Y. V.; Zhao, C. C.; Vickers, J. W.; Zhu, G. B.; Luo, Z.; Song, J.; Lian, T. Q.; Musaev, D. G.; Hill, C. L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589.

4

Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Recent advances in sensitized photocathodes: From molecular dyes to semiconducting quantum dots. Adv. Sci. 2018, 5, 1700684.

5

Yang, H. B.; Miao, J. W.; Hung, S. F.; Huo, F. W.; Chen, H. M.; Liu, B. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting. ACS Nano 2014, 8, 10403–10413.

6

Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg, R. Photogeneration of hydrogen from water using cdse nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.

7

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

8

Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

9

Han, Z. J.; Eisenberg, R. Fuel from water: The photochemical generation of hydrogen from water. Acc. Chem. Res. 2014, 47, 2537–2544.

10

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

11

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

12

Li, L.; Duan, L. L.; Wen, F. Y.; Li, C.; Wang, M.; Hagfeldt, A.; Sun, L. C. Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem. Commun. 2012, 48, 988–990.

13

Fan, K.; Li, F. S.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. C. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light. Phys. Chem. Chem. Phys. 2014, 16, 25234– 25240.

14

Tong, L.; Iwase, A.; Nattestad, A.; Bach, U.; Weidelener, M.; Götz, G.; Mishra, A.; Bäuerle, P.; Amal, R.; Wallace, G. G. et al. Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/ BiVO4 tandem photo-electrochemical device. Energy Environ. Sci. 2012, 5, 9472–9475.

15

Ji, Z. Q.; He, M. F.; Huang, Z. J.; Ozkan, U.; Wu, Y. Y. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. J. Am. Chem. Soc. 2013, 135, 11696–11699.

16

Li, F. S.; Fan, K.; Xu, B.; Gabrielsson, E.; Daniel, Q.; Li, L.; Sun, L. C. Organic dye-sensitized tandem photoelectrochemical cell for light driven total water splitting. J. Am. Chem. Soc. 2015, 137, 9153– 9159.

17

Massin, J.; Bräutigam, M.; Kaeffer, N.; Queyriaux, N.; Field, M. J.; Schacher, F. H.; Popp, J.; Chavarot-Kerlidou, M.; Dietzek, B.; Artero, V. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus 2015, 5, 20140083.

18

Dong, Y. M.; Wu, R. X.; Jiang, P. P.; Wang, G. L.; Chen, Y. M.; Wu, X. M.; Zhang, C. Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion. ACS Sustainable Chem. Eng. 2015, 3, 2429–2434.

19

Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Tamaki, Y.; Suzuki, E.; Abe, T. Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C 2008, 112, 16134–16139.

20

Kang, S. H.; Zhu, K.; Neale, N. R.; Frank, A. J. Hole transport in sensitized CdS-NiO nanoparticle photocathodes. Chem. Commun. 2011, 47, 10419–10421.

21

Wang, F.; Wang, W. G.; Wang, X. J.; Wang, H. Y.; Tung, C. H.; Wu, L. Z. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew. Chem. , Int. Ed. 2011, 50, 3193–3197.

22

Li, Z. J.; Li, X. B.; Wang, J. J.; Yu, S.; Li, C. B.; Tung, C. H.; Wu, L. Z. A robust "artificial catalyst" in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci. 2013, 6, 465–469.

23

Lv, H. J.; Ruberu, T. P.; Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.; Eisenberg, R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes. J. Am. Chem. Soc. 2016, 138, 11654–11663.

24

Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

25

Park, M. A.; Lee, S. Y.; Kim, J. H.; Kang, S. H.; Kim, H.; Choi, C. J.; Ahn, K. S. Enhanced photoelectrochemical response of CdSe quantum dot-sensitized p-type NiO photocathodes. Phys. Status Solidi A 2014, 211, 1868–1872.

26

Lv, H. J.; Wang, C. C.; Li, G. C.; Burke, R.; Krauss, T. D.; Gao, Y. L.; Eisenberg, R. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. USA 2017, 114, 11297–11302.

27

Ruberu, T. P. A.; Dong, Y. M.; Das, A.; Eisenberg, R. Photoelectrochemical generation of hydrogen from water using a CdSe quantum dot-sensitized photocathode. ACS Catal. 2015, 5, 2255–2259.

28

Na, Y.; Hu, B.; Yang, Q. L.; Liu, J.; Zhou, L.; Fan, R. Q.; Yang, Y. L. CdS quantum dot sensitized P-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting. Chin. Chem. Lett. 2015, 26, 141–144.

29

Su, X.; Chen, Y.; Ren, L.; He, Y.; Yin, X. S.; Liu, Y.; Yang, W. Z. Cobalt catalyst grafted CdSeTe quantum dots on porous nio as photocathode for H2 evolution under visible light. ACS Sustainable Chem. Eng. 2019, 7, 11166–11174.

30

Wu, H. L.; Li, X. B.; Wang, Y.; Zhou, S.; Chen, Y. J.; He, X. J.; Tung, C. H.; Wu, L. Z. Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. J. Mater. Chem. A 2019, 7, 26098–26104.

31

Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

32

Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X. Y. Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. J. Phys. Chem. C 2008, 112, 8419–8423.

33

Ruland, A.; Schulz-Drost, C.; Sgobba, V.; Guldi, D. M. Enhancing photocurrent efficiencies by resonance energy transfer in cdte quantum dot multilayers: Towards rainbow solar cells. Adv. Mater. 2011, 23, 4573–4577.

34

Lv, H. J.; Guo, W. W.; Wu, K. F.; Chen, Z. Y.; Bacsa, J.; Musaev, D. G.; Geletii, Y. V.; Lauinger, S. M.; Lian, T. Q.; Hill, C. L. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14015–14018.

35

Guo, W. W.; Lv, H. J.; Chen, Z. Y.; Sullivan, K. P.; Lauinger, S. M.; Chi, Y. N.; Sumliner, J. M.; Lian, T. Q.; Hill, C. L. Self-assembly of polyoxometalates, Pt nanoparticles and metal–organic frameworks into a hybrid material for synergistic hydrogen evolution. J. Mater. Chem. A 2016, 4, 5952–5957.

36

Lv, H. J.; Chi, Y. N.; van Leusen, J.; Kögerler, P.; Chen, Z. Y.; Bacsa, J.; Geletii, Y. V.; Guo, W. W.; Lian, T. Q.; Hill, C. L. [{Ni4(OH)3AsO4}4(B-α-PW9O34)4]28-: A new polyoxometalate structural family with catalytic hydrogen evolution activity. Chem. —Eur. J. 2015, 21, 17363-17370.

37

Zhang, G. H.; Yang, W. B.; Wu, W. M.; Wu, X. Y.; Zhang, L.; Kuang, X. F.; Wang, S. S.; Lu, C. Z. A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. J. Catal. 2019, 369, 54-59.

38

von Allmen, K.; Moré, R.; Müller, R.; Soriano-López, J.; Linden, A.; Patzke, G. R. Nickel-containing keggin-type polyoxometalates as hydrogen evolution catalysts: Photochemical structure-activity relationships. ChemPlusChem 2015, 80, 1389-1398.

39

Paille, G.; Boulmier, A.; Bensaid, A.; Ha-Thi, M. H.; Tran, T. T.; Pino, T.; Marrot, J.; Rivière, E.; Hendon, C. H.; Oms, O. et al. An unprecedented {Ni14SiW9} hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chem. Commun. 2019, 55, 4166-4169.

40

Han, X. B.; Qin, C.; Wang, X. L.; Tan, Y. Z.; Zhao, X. J.; Wang, E. B. Bio-inspired assembly of cubane-adjustable polyoxometalate-based high-nuclear nickel clusters for visible light-driven hydrogen evolution. Appl. Catal. B Environ. 2017, 211, 349-356.

41

Cui, T. T.; Qin, L.; Fu, F. Y.; Xin, X.; Li, H. J.; Fang, X. K.; Lv, H. J. Pentadecanuclear Fe-containing polyoxometalate catalyst for visible-light-driven generation of hydrogen. Inorg. Chem. 2021, 60, 4124-4132.

42

Lv, H. J.; Gao, Y. Z.; Guo, W. W.; Lauinger, S. M.; Chi, Y. N.; Bacsa, J.; Sullivan, K. P.; Wieliczko, M.; Musaev, D. G.; Hill, C. L. Cu-based polyoxometalate catalyst for efficient catalytic hydrogen evolution. Inorg. Chem. 2016, 55, 6750-6758.

43
Qin, L.; Zhao, C. Y.; Yao, L. Y.; Dou, H. B.; Zhang, M.; Xie, J.; Weng, T. C.; Lv, H. J.; Yang, G. Y. Efficient photogeneration of hydrogen boosted by long-lived dye-modified Ir(Ⅲ) photosensitizers and polyoxometalate catalyst. CCS Chem. , in press, DOI: 10.31635/ccschem.021.202000741.https://doi.org/10.31635/ccschem.021.202000741
DOI
44
Li, H. L.; Zhang, M.; Lian, C.; Lang, Z. L.; Lv, H. J.; Yang, G. Y. Ring-shaped polyoxometalate built by {Mn4PW9} and PO4 units for efficient visible-light-driven hydrogen evolution. CCS Chem., in press, DOI: 10.31635/ccschem.020.202000403.https://doi.org/10.31635/ccschem.020.202000403
DOI
45

Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855-871.

46

Bu, H. B.; Kikunaga, H.; Shimura, K.; Takahasi, K.; Taniguchi, T.; Kim, D. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties. Phys. Chem. Chem. Phys. 2013, 15, 2903-2911.

47

Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 2003, 107, 8-13.

48

Abdellah, M.; Zhang, S. H.; Wang, M.; Hammarström, L. Competitive hole transfer from CdSe quantum dots to thiol ligands in CdSe-cobaloxime sensitized NiO films used as photocathodes for H2 evolution. ACS Energy Lett. 2017, 2, 2576-2580.

49

Jiao, L.; Dong, Y. Y.; Xin, X.; Qin, L.; Lv, H. J. Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Appl. Catal. B Environ. 2021, 291, 120091.

File
12274_2021_3663_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 April 2021
Revised: 01 June 2021
Accepted: 07 June 2021
Published: 23 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871025 and 21831001), the Recruitment Program of Global Experts (Young Talents), and BIT Excellent Young Scholars Research Fund.

Return