Journal Home > Volume 14 , Issue 10

The development of cost-effective electrocatalysts for overall water splitting is highly desirable, remaining a critical challenge at current stage. Herein, a class of composite FeNi@MXene (Mo2TiC2Tx)@nickel foam (NF) has been synthesized through introducing Fe2+ ions and in-situ combining with surface nickel atoms on nickel foam. The obtained FeNi@Mo2TiC2Tx@NF exhibited high activity with overpotentials of 165 and 190 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at a current density of 10 mA·cm-2, respectively. The synergetic effects of Mo2TiC2Tx and FeNi nanoalloys lead to increasing catalytic activities, where MXene provides high active surface area and rich active sites for HER, and FeNi nanoalloys promote the OER. Theoretical simulation of electron exchange capacity between FeNi and MXene in FeNi@Mo2TiC2Tx catalyst shows that electrons transferred from surface Mo atoms to the interface between FeNi and MXene, indicating that the electrons are accumulated near the FeNi nanoparticles. This kind of electronic distribution facilitates the formation of intermediate of NiOOH. Correspondingly, (H+ + e-) is more inclined onto Mo–Ni interfaces for HER. The Gibbs free energy changes for H* to HER and potential-limiting step for -OOH intermediate in OER over FeNi@Mo2TiC2Tx are much less than those on bare MXene. The catalyst can be further used for overall water splitting in alkaline solution, realizing a current density of 50 mA·cm-2 at 1.74 V. This work provides a facile strategy to achieve efficient and cheap catalysts for new energy production.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

FeNi nanoparticles on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting

Show Author's information Jiayang Wang1,2Peilei He2Yongli Shen1Linxiu Dai1Zhe Li2Yue Wu2( )Changhua An1( )
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,School of Chemistry and Chemical Engineering, Tianjin University of Technology,Tianjin,300384,China;
Department of Chemical and Biological Engineering,Iowa State University,IA,50011,USA;

Abstract

The development of cost-effective electrocatalysts for overall water splitting is highly desirable, remaining a critical challenge at current stage. Herein, a class of composite FeNi@MXene (Mo2TiC2Tx)@nickel foam (NF) has been synthesized through introducing Fe2+ ions and in-situ combining with surface nickel atoms on nickel foam. The obtained FeNi@Mo2TiC2Tx@NF exhibited high activity with overpotentials of 165 and 190 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at a current density of 10 mA·cm-2, respectively. The synergetic effects of Mo2TiC2Tx and FeNi nanoalloys lead to increasing catalytic activities, where MXene provides high active surface area and rich active sites for HER, and FeNi nanoalloys promote the OER. Theoretical simulation of electron exchange capacity between FeNi and MXene in FeNi@Mo2TiC2Tx catalyst shows that electrons transferred from surface Mo atoms to the interface between FeNi and MXene, indicating that the electrons are accumulated near the FeNi nanoparticles. This kind of electronic distribution facilitates the formation of intermediate of NiOOH. Correspondingly, (H+ + e-) is more inclined onto Mo–Ni interfaces for HER. The Gibbs free energy changes for H* to HER and potential-limiting step for -OOH intermediate in OER over FeNi@Mo2TiC2Tx are much less than those on bare MXene. The catalyst can be further used for overall water splitting in alkaline solution, realizing a current density of 50 mA·cm-2 at 1.74 V. This work provides a facile strategy to achieve efficient and cheap catalysts for new energy production.

Keywords: electrocatalysis, MXene, water splitting, FeNi

References(46)

1

Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610-614.

2

Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012-6021.

3

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

4

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Li, P.; Sun, B.; Gao, X. C.; Yan, K.; Liu, H.; Duan, Y.; Gao, M. R. et al Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 2020, 71, 104652.

5

Wei, G. J.; Du, K.; Zhao, X. X.; Wang, J. Y.; Yan, W. X.; An, C.; An, C. H. Cable-like carbon nanotubes decorated metal-organic framework derived ultrathin CoSe2/CNTs nanosheets for electrocatalytic overall water splitting. Chin. Chem. Lett. 2020, 31, 2641-2644.

6

Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select 2021, 2, 492-511.

7

Cui, B. B.; Hu, B.; Liu, J. M.; Wang, M. H.; Song, Y. P.; Tian, K.; Zhang, Z. H.; He, L. H. Solution-plasma-assisted bimetallic oxide alloy nanoparticles of Pt and Pd embedded within two-dimensional Ti3C2Tx nanosheets as highly active electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 23858-23873.

8

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

9

Hoang, V. C.; Dinh, K. N.; Gomes, V. G. Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: A sustainable bifunctional electrocatalyst for efficient water splitting. Carbon 2020, 157, 515-524.

10

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921-2924.

11

Wang, J. Y.; Shen, Y. L.; Wei, G. J.; Xi, W.; Ma, X. M.; Zhang, W. Q.; Zhu, P. P.; An, C. H. Synthesis of ultrathin Co2AlO4 nanosheets with oxygen vacancies for enhanced electrocatalytic oxygen evolution. Sci. China Mater. 2020, 63, 91-99.

12

Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412-419.

13

Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181-3192.

14

Sarkar, S.; Peter, S. C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5, 2060-2080.

15

Wang, J. J.; Yue, X. Y.; Yang, Y. Y.; Sirisomboonchai, S.; Wang, P. F.; Ma, X. L.; Abudula, A.; Guan, G. Q. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. J. Alloys Compd. 2020, 819, 153346.

16

Sun, K. A.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang. Z. W.; Li, Z. L.; Liu, Z.; Cao, D. W. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068-3074.

17

Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401-411.

18

Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447-454.

19

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

20

Yang, Q.; Wang, Y. K.; Li, X. L.; Li, H. F.; Wang, Z. F.; Tang, Z. J.; Ma, L. T.; Mo, F. N.; Zhi, C. Y. Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 2018, 1, 183-195.

21

Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426-7451.

22

Jiang, Y. A.; Sun, T.; Xie, X.; Jiang, W.; Li, J.; Tian, B. B.; Su, C. L. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1368-1373.

23

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985-992.

24

Kuznetsov, D. A.; Chen, Z. X.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809-17816.

25

Cui, C.; Cheng, R. F.; Zhang, H.; Zhang, C.; Ma, Y. H.; Shi, C.; Fan, B. B.; Wang, H. L.; Wang, X. H. Ultrastable MXene@Pt/SWCNTs' nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000693.

26

Cheng, Y.; He, S.; Veder, J. P.; de Marco, R.; Yang, S. Z.; Jiang, S. P. Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 2019, 6, 3478-3487.

27

Li, C. Q.; Wang, G.; Li, K.; Liu, Y. W.; Yuan, B. B.; Lin, Y. Q. FeNi-based coordination crystal directly serving as efficient oxygen evolution reaction catalyst and its density functional theory insight on the active site change mechanism. ACS Appl. Mater. Interfaces 2019, 11, 20778-20787.

28

Shah, S. A.; Ji, Z. Y.; Shen, X. P.; Yue, X. Y.; Zhu, G. X.; Xu, K. Q.; Yuan, A. H.; Ullah, N.; Zhu, J.; Song, P. et al. Thermal synthesis of FeNi@nitrogen-doped graphene dispersed on nitrogen-doped carbon matrix as an excellent electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 4075-4083.

29

Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.

30

Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y. R.; Qi, Z. Y.; Libretto, N.; Xu, B.; Luo, J. W. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 2018, 9, 5258.

31

Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636-4645.

32

Baltrusaitis, J.; Mendoza-Sanchez, B.; Fernandez, V.; Veenstra, R.; Dukstiene, N.; Roberts, A.; Fairley, N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 2015, 326, 151-161.

33

Biesinger, M. C.; Payne, B. P.; Hart, B. R.; Grosvenor, A. P.; McIntryre, N. S.; Lau, L. W. M.; Smart, R. S. C. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides. J. Phys. Conf. Ser. 2008, 100, 012025.

34

Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887-898.

35

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717-2730.

36

Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. The role of the auger parameter in XPS studies of nickel metal, halides and oxides. Phys. Chem. Chem. Phys. 2012, 14, 2434-2442.

37

Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771-1779.

38

Moghimi, N.; Bazargan, S.; Pradhan, D.; Leung, K. T. Phase-induced shape evolution of FeNi nanoalloys and their air stability by in-situ surface passivation. J. Phys. Chem. C 2013, 117, 4852-4858.

39

An, D.; Zhang, Z. Y.; Wang, Y. H.; Cheng, S. S.; Liu, Y. Q. The distinctly enhanced electromagnetic wave absorption properties of FeNi/rGO nanocomposites compared with pure FeNi alloys. J. Supercond. Nov. Magn. 2019, 32, 385-392.

40

Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564-1574.

41

Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2018, 3, 279-289.

42

Xiao, M. S.; Tian, Y. P.; Yan, Y. H.; Feng, K.; Miao, Y. Q. Electrodeposition of Ni(OH)2/NiOOH in the presence of urea for the improved oxygen evolution. Electrochim. Acta 2015, 164, 196-202.

43

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

44

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

45

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

46

Wang, V.; Xu, N.; Liu, J. -C.; Tang, G.; Geng, W. -T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

Video
12274_2021_3660_MOESM2_ESM.mp4
File
12274_2021_3660_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 April 2021
Revised: 06 June 2021
Accepted: 06 June 2021
Published: 06 July 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Nos. 21771137, 21773288, and 21722104), the Training Project of Innovation Team of Colleges and Universities in Tianjin (No. TD13-5020), and the Natural Science Foundation of Tianjin City of China (No. 18JCJQJC47700).

Return