Journal Home > Volume 15 , Issue 2

The thermal stability of CeO2 nanomaterials can directly impact both the uniformity of the supported catalysts and the catalytic behavior of CeO2 itself. However, knowledge about the thermal stability of CeO2 is still deficient. Here, we conduct in-situ transmission electron microscopy experiments and theoretical calculations to elucidate the thermal stability of CeO2 nanomaterials under different environments. A sinter (< 700 ℃) and a structural decomposition (> 700 ℃) are observed within CeO2 nanoflowers under O2. The sinter firstly occurs among the nanoflowers' monomers and then the sintered nanoparticles structurally decompose to tiny nanoparticles from the strain interface. Under a vacuum environment, the CeO2 nanoflowers firstly undergo a transition from cubic fluorite CeO2 to hexagonal Ce2O3, accompanied by the oxygen release. The Ce2O3 nanoparticles further atomically sublimate from the edges to the center under high temperatures. Theoretical calculation results reveal a considerably lower energy barrier for the structural decomposition under O2 and for the sublimation under vacuum. This work provides a perspective on the structural design and performance optimization of CeO2-based catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Combining in-situ TEM observations and theoretical calculation for revealing the thermal stability of CeO2 nanoflowers

Show Author's information Mingyun Zhu1,§Kuibo Yin1,§( )Yifeng Wen1Shugui Song1Yuwei Xiong1Yunqian Dai2Litao Sun1
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of EducationSoutheast UniversityNanjing210096China
School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China

§ Mingyun Zhu and Kuibo Yin contributed equally to this work.

Abstract

The thermal stability of CeO2 nanomaterials can directly impact both the uniformity of the supported catalysts and the catalytic behavior of CeO2 itself. However, knowledge about the thermal stability of CeO2 is still deficient. Here, we conduct in-situ transmission electron microscopy experiments and theoretical calculations to elucidate the thermal stability of CeO2 nanomaterials under different environments. A sinter (< 700 ℃) and a structural decomposition (> 700 ℃) are observed within CeO2 nanoflowers under O2. The sinter firstly occurs among the nanoflowers' monomers and then the sintered nanoparticles structurally decompose to tiny nanoparticles from the strain interface. Under a vacuum environment, the CeO2 nanoflowers firstly undergo a transition from cubic fluorite CeO2 to hexagonal Ce2O3, accompanied by the oxygen release. The Ce2O3 nanoparticles further atomically sublimate from the edges to the center under high temperatures. Theoretical calculation results reveal a considerably lower energy barrier for the structural decomposition under O2 and for the sublimation under vacuum. This work provides a perspective on the structural design and performance optimization of CeO2-based catalysts.

Keywords: thermal stability, theoretical calculation, CeO2, structural evolution, in-situ transmission electron microscopy

References(43)

1

Trovarelli, A.; de Leitenburg, C.; Boaro, M.; Dolcetti, G. The utilization of ceria in industrial catalysis. Catal. Today 1999, 50, 353-367.

2

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987-6041.

3

Grabchenko, M. V.; Mamontov, G. V.; Zaikovskii, V. I.; La Parola, V.; Liotta, L. F.; Vodyankina, O. V. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B: Environ. 2020, 260, 118148.

4

Song, J. J.; Yang, Y. X.; Liu, S. J.; Li, L.; Yu, N.; Fan, Y. T.; Chen, Z. M.; Kuai, L.; Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res., in press, DOI: 10.1007/s12274-021-3443-7.

5

Aneggi, E.; Wiater, D.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Shape-dependent activity of ceria in soot combustion. ACS Catal. 2014, 4, 172-181.

6

Lópeza, J. M.; Gilbank, A. L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl. Catal. B: Environ. 2015, 174-175, 403-412.

7

Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal. 2017, 7, 4716−4735.

8

Pereira-Hernandez, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

9

Zhu, M. Y.; Wen, Y. F.; Song, S. G.; Zheng, A. Q.; Li, J. C.; Sun, W. W.; Dai, Y. Q.; Yin, K. B.; Sun, L. T. Synergistic effects between polyvinylpyrrolidone and oxygen vacancies on improving the oxidase-mimetic activity of flower-like CeO2 nanozymes. Nanoscale 2020, 12, 19104-19111.

10

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.

11

Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713-717.

12

Hill, A. J.; Seo, C. Y.; Chen, X. Y.; Bhat, A.; Fisher, G. B.; Lenert, A.; Schwank, J. W. Thermally induced restructuring of Pd@CeO2 and Pd@SiO2 nanoparticles as a strategy for enhancing low-temperature catalytic activity. ACS Catal. 2020, 10, 1731-1741.

13

Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169-184.

14

Bhalkikar, A.; Wu, T. S.; Fisher, T. J.; Sarella, A.; Zhang, D. W.; Gao, Y.; Soo, Y. L.; Cheung, C. L. Tunable catalytic activity of gadolinium-doped ceria nanoparticles for pro-oxidation of hydrogen peroxide. Nano Res. 2020, 13, 2384-2392.

15

Hu, Z. T.; Ding, Y. Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res. , in press, DOI: 10.1007/s12274-021-3480-2.

16

Zhang, S. Y.; Chen, C.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Graham, G. W.; Pan, X. Q. Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy. Nat. Commun. 2015, 6, 7778.

17

Yin, K. B.; Zhang, M. H.; Hood, Z. D.; Pan, J.; Meng, Y. S.; Chi, M. F. Self-assembled framework formed during lithiation of SnS2 nanoplates revealed by in situ electron microscopy. Acc. Chem. Res. 2017, 50, 1513-1520.

18

Steinhauer, S.; Zhao, J. L.; Singh, V.; Pavloudis, T.; Kioseoglou, J.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M. Thermal oxidation of size-selected Pd nanoparticles supported on CuO nanowires: The role of the CuO-Pd interface. Chem. Mater. 2017, 29, 6153-6160.

19

Shen, X. C.; Dai, S.; Zhang, C. L.; Zhang, S. Y.; Sharkey, S. M.; Graham, G. W.; Pan, X. Q.; Peng, Z. M. In situ atomic-scale observation of the two-dimensional Co(OH)2 transition at atmospheric pressure. Chem. Mater. 2017, 29, 4572-4579.

20

Tan, S. F.; Chee, S. W.; Baraissov, Z.; Jin, H. M.; Tan, T. L.; Mirsaidov, U. Real-time imaging of nanoscale redox reactions over bimetallic nanoparticles. Adv. Funct. Mater. 2019, 29, 1903242.

21

Cai, C.; Han, S. B.; Wang, Q.; Gu, M. Direct observation of yolk-shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency. ACS Nano 2019, 13, 8865-8871.

22

van der Hoeven, J. E. S.; Welling, T. A. J.; Silva, T. A. G.; van den Reijen, J. E.; La Fontaine, C.; Carrier, X.; Louis, C.; van Blaaderen, A.; de Jongh, P. E. In situ observation of atomic redistribution in alloying gold-silver nanorods. ACS Nano 2018, 12, 8467-8476.

23

Schlexer, P.; Andersen, A. B.; Sebok, B.; Chorkendorff, I.; Schiøtz, J.; Hansen, T. W. Size-dependence of the melting temperature of individual Au nanoparticles. Part. Part. Syst. Charact. 2019, 36, 1800480.

24

Cheng, F.; Lian, L. Y.; Li, L. Y.; Rao, J. Y.; Li, C.; Qi, T. Y.; Cheng, Y. F.; Zhang, Z.; Zhang, J. B.; Wang, J. B. et al. Sublimation and related thermal stability of PbSe nanocrystals with effective size control evidenced by in situ transmission electron microscopy. Nano Energy 2020, 75, 104816.

25

Chmielewski, A.; Meng, J.; Zhu, B. E.; Gao, Y.; Guesmi, H.; Prunier, H.; Alloyeau, D.; Wang, G.; Louis, C.; Delannoy, L. et al. Reshaping dynamics of gold nanoparticles under H2 and O2 at atmospheric pressure. ACS Nano 2019, 13, 2024-2033.

26

Peng, X. X.; Abelson, A.; Wang, Y.; Qian, C.; Shangguan, J. Y.; Zhang, Q. B.; Yu, L.; Yin, Z. W.; Zheng, W. J.; Bustillo, K. C. et al. In situ TEM study of the degradation of PbSe nanocrystals in air. Chem. Mater. 2019, 31, 190-199.

27

Hui, F.; Li, C.; Chen, Y. H.; Wang, C. H.; Huang, J. P.; Li, A.; Li, W.; Zou, J.; Han, X. D. Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res. 2020, 13, 3019-3024.

28

Crozier, P. A.; Wang, R. G.; Sharma, R. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy 2008, 108, 1432-1440.

29

Wang, R. G.; Crozier, P. A.; Sharma, R. Structural transformation in ceria nanoparticles during redox processes. J. Phys. Chem. C 2009, 113, 5700-5704.

30

Wang, R. G.; Mutinda, S. I. The dynamic shape of ceria nanoparticles. Chem. Phys. Lett. 2011, 517, 186-189.

31

Ma, Z. X.; Sheng, L. P.; Wang, X. W.; Yuan, W. T.; Chen, S. Y.; Xue, W.; Han, G. R.; Zhang, Z.; Yang, H. S.; Lu, Y. H. et al. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature. Adv. Mater. 2019, 31, 1903719.

32

D'Angelo, A. M.; Liu, A. C. Y.; Chaffee, A. L. Oxygen uptake of Tb-CeO2: Analysis of Ce3+ and oxygen vacancies. J. Phys. Chem. C 2016, 120, 14382-14389.

33

Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146.

34

Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; Sun, K. J.; Tanaka, S.; Kohyama, M.; Shimada, S.; Haruta, M.; Takeda, S. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 2012, 335, 317-319.

35

Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

36

Zhu, B. E.; Xu, Z.; Wang, C. L.; Gao, Y. Shape evolution of metal nanoparticles in water vapor environment. Nano Lett. 2016, 16, 2628-2632.

37

Zhang, X.; Meng, J.; Zhu, B. E.; Yu, J.; Zou, S. H.; Zhang, Z.; Gao, Y.; Wang, Y. In situ TEM studies of the shape evolution of Pd nanocrystals under oxygen and hydrogen environments at atmospheric pressure. Chem. Commun. 2017, 53, 13213-13216.

38

Zhang, X.; Meng, J.; Zhu, B. E.; Yuan, W. T.; Yang, H. S.; Zhang, Z.; Gao, Y.; Wang, Y. Unexpected refacetting of palladium nanoparticles under atmospheric N2 conditions. Chem. Commun. 2018, 54, 8587-8590.

39

Johnston-Peck, A. C.; Yang, W. C. D.; Winterstein, J. P.; Sharma, R.; Herzing, A. A. In situ oxidation and reduction of cerium dioxide nanoparticles studied by scanning transmission electron microscopy. Micron 2018, 115, 54-63.

40

Yue, Y. H.; Yuchi, D.; Guan, P. F.; Xu, J.; Guo, L.; Liu, J. Y. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes. Nat. Commun. 2016, 7, 12251.

41

Bisker-Leib, V.; Doherty, M. F. Modeling the crystal shape of polar organic materials-prediction of urea crystals grown from polar and nonpolar solvents. Cryst. Growth Des. 2001, 1, 455-461.

42

Gharagheizi, F.; Sattari, M.; Tirandazi, B. Prediction of crystal lattice energy using enthalpy of sublimation: A group contribution-based model. Ind. Eng. Chem. Res. 2011, 50, 2482-2486.

43

Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model; Oxford University: Oxford, 2002.

File
12274_2021_3659_MOESM1_ESM.pdf (6.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 April 2021
Revised: 22 May 2021
Accepted: 07 June 2021
Published: 07 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0204800), the National Natural Science Foundation of China (Nos. 11674052, 11525415, and 21975042), and the Project of Six Talents Climax Foundation of Jiangsu (Nos. XNL-044 and XCL-082).

Return