Journal Home > Volume 14 , Issue 10

Potassium-ion batteries (PIBs) are promising candidates for next-generation energy storage devices due to the earth abundance of potassium, low cost, and stable redox potentials. However, the lack of promising high-performance electrode materials for the intercalation/deintercalation of large potassium ions is a major challenge up to date. Herein, we report a novel uniform nickel selenide nanoparticles encapsulated in nitrogen-doped carbon (defined as pNiSe@NCq) as an anode for PIBs, which exhibits superior rate performance and cyclic stability. Benefiting from the unique hierarchical core-shell like nanostructure, the intrinsic properties of metal-selenium bonds, synergetic effect of different components, and a remarkable pseudocapacitance effect, the anode exhibits a very high reversible capacity of 438 mAdhdg-1 at 50 mAdg-1, an excellent rate capability, and remarkable cycling performance over 2, 000 cycles. The electrochemical mechanism were investigated by the in-situ X-ray diffraction, ex-situ high-resolution transmission electron microscopy, selected area electron diffraction, and first principle calculations. In addition, NiSe@NC anode also shows high reversible capacity of 512 mAdhdg-1 at 100 mAdg-1 with 84% initial Coulombic efficiency, remarkable rate performance, and excellent cycling life for sodium ion batteries. We believe the proposed simple approach will pave a new way to synthesize suitable anode materials for secondary ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction and electrochemical mechanism investigation of hierarchical core-shell like composite as high performance anode for potassium ion batteries

Show Author's information Nadeem Hussain1,3Suyuan Zeng2Zhenyu Feng1Yanjun Zhai2Chunsheng Wang1Mingwen Zhao4( )Yitai Qian1Liqiang Xu1,2( )
Key Laboratory of Colloid & Interface Chemistry,Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University,Jinan,250100,China;
Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology,Liaocheng University,Liaocheng,252059,China;
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology (Ministry of Education),Institute of Microscale Optoelectronics, Shenzhen University,Shenzhen,518060,China;
School of Physics,Shandong University,Jinan,250100,China;

Abstract

Potassium-ion batteries (PIBs) are promising candidates for next-generation energy storage devices due to the earth abundance of potassium, low cost, and stable redox potentials. However, the lack of promising high-performance electrode materials for the intercalation/deintercalation of large potassium ions is a major challenge up to date. Herein, we report a novel uniform nickel selenide nanoparticles encapsulated in nitrogen-doped carbon (defined as pNiSe@NCq) as an anode for PIBs, which exhibits superior rate performance and cyclic stability. Benefiting from the unique hierarchical core-shell like nanostructure, the intrinsic properties of metal-selenium bonds, synergetic effect of different components, and a remarkable pseudocapacitance effect, the anode exhibits a very high reversible capacity of 438 mAdhdg-1 at 50 mAdg-1, an excellent rate capability, and remarkable cycling performance over 2, 000 cycles. The electrochemical mechanism were investigated by the in-situ X-ray diffraction, ex-situ high-resolution transmission electron microscopy, selected area electron diffraction, and first principle calculations. In addition, NiSe@NC anode also shows high reversible capacity of 512 mAdhdg-1 at 100 mAdg-1 with 84% initial Coulombic efficiency, remarkable rate performance, and excellent cycling life for sodium ion batteries. We believe the proposed simple approach will pave a new way to synthesize suitable anode materials for secondary ion batteries.

Keywords: core-shell, in-situ X-ray diffraction (XRD), pseudocapacitance, potassium-ion batteries, first principle calculations

References(44)

1
Wang, L.; Zhang, B.; Wang B.; Zeng, S. Y.; Zhao, M. W.; Sun, X. P.; Zhai, Y. J.; Xu, L. Q. In-situ nano-crystallization and solvation modulation to promote highly stable anode involving alloy/de-alloy for potassium ion batteries. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202100654.
DOI
2

Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus- based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.

3

Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

4

Xue, L. G.; Li, Y. T.; Gao, H. C.; Zhou, W. D.; Lü, X. J.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164-2167.

5

Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium prussian blue nanoparticles: A low- cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

6
He, Y. Y.; Dong, C. F.; He, S. J.; Li, H.; Sun, X. P.; Cheng, Y.; Zhou, G. W.; Xu, L. Q. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage. Nano Res., in press, https://doi.org/10.1007/s12274-021-3328-9.
DOI
7
Sun, X. P.; Wang, L.; Li, C. C.; Wang, D. B.; Sikandar, I.; Man, R. X.; Tian, F.; Qian, Y. T.; Xu, L. Q. Dandelion-like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium- ion and half/full sodium-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-3407-y.
DOI
8

Abouimrane, A.; Weng, W.; Eltayeb, H.; Cui, Y. J.; Niklas, J.; Poluektov, O.; Amine, K. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. Sci. 2012, 5, 9632-9638.

9

Dong, C. F.; Guo, L. J.; Li, H. B.; Zhang, B.; Gao, X.; Tian, F.; Qian, Y. T.; Wang, D. B.; Xu, L. Q. Rational fabrication of CoS2/Co4S3@N- doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 2020, 25, 679-686.

10

Dong, C. F.; Wu, L. Q.; He, Y. Y.; Zhou, Y. L.; Sun, X. P.; Du, W.; Sun, X. Q.; Xu, L. Q.; Jiang, F. Y. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small 2020, 16, e2004580.

11

Dong, C. F.; Guo, L. J.; He, Y. Y.; Chen, C. J.; Qian, Y. T.; Chen, Y. N.; Xu, L. Q. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Data Brief 2018, 20, 1999-2002.

12

Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

13

Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

14

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9: 1720.

15

Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

16

Chen, M. Z; Wang, E. H.; Liu, Q. N.; Guo, X. D.; Chen, W. H.; Chou, S. L.; Dou, S. X. Recent progress on iron-and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 19, 163-178.

17

Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/ potassium-ion full batteries. Small 2019, 15, 1901272.

18

Tan, H. T.; Feng, Y. Z.; Rui, X. H.; Yu, Y.; Huang, S. M. Metal chalcogenides: Paving the way for high-performance sodium/potassium- ion batteries. Small Methods 2020, 4, 1900563.

19

Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled cuse crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900323.

20

Zhang, Z. F.; Wu, C. X.; Chen, Z. H.; Li, H. Y.; Cao, H. J.; Luo, X. J.; Fang, Z. B.; Zhu, Y. Y. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J. Mater. Chem. A 2020, 8, 3369-3378.

21

Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high- capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1-8.

22

An, Y. L.; Fei, H. F.; Zhang, Z.; Ci, L. J.; Xiong, S. L.; Feng, J. K. A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs. Chem. Commun. 2017, 53, 8360-8363.

23

He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35-45.

24

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496-1504.

25

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.

26

Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N, P-doped carbon nanosheets as a long- life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

27

Yuan, J. J.; Liu, W.; Zhang, X. K.; Zhang, Y. H.; Yang, W. T.; Lai, W. D.; Li, X. K.; Zhang, J. J.; Li, X. F. MOF derived ZnSe-FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage. J. Power Sources 2020, 455, 227937.

28

Chu, J. H.; Yu, Q. Y.; Han, K.; Xing, L. D.; Bao, Y. P.; Wang, W. A. A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon 2020, 161, 834-841.

29

Etogo, C. A.; Huang, H. W.; Hong, H.; Liu, G. X.; Zhang, L. Metal- organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020, 24, 167-176.

30

Sobhani, A.; Salavati-Niasari, M.; Davar, F. Shape control of nickel selenides synthesized by a simple hydrothermal reduction process. Polyhedron 2012, 31, 210-216.

31

Sobhani, A.; Davar, F.; Salavati-Niasari, M. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB. Appl. Surf. Sci. 2011, 257, 7982-7987.

32

Moloto, N.; Moloto, M.; Coville, N.; Ray, S. S. Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods. J. Crystal Growth 2009, 311, 3924-3932.

33

Huang, Y.; Chong, X. D.; Liu, C. B.; Liang, Y.; Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem., Int. Ed. 2018, 57, 13163- 13166.

34

Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004-11015.

35

Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457-6498.

36

Yu, Q. Y.; Jiang, B.; Hu, J.; Lao, C. Y.; Gao, Y. Z.; Li, P. H.; Liu, Z. W.; Suo, G. Q; He, D. L.; Wang, W. A. et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries. Adv. Sci. 2018, 5, 1800782.

37

Suo, G. Q.; Zhang, J. Q.; Li, D.; Yu, Q. Y.; Wang, W. A.; He, M.; Feng, L.; Hou, X. J.; Yang, Y. L.; Ye, X. H. et al. N-doped carbon/ ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 2020, 388, 124396.

38

Liu, Z. W.; Han, K.; Li, P.; Wang, W.; He, D. L.; Tan, Q. W.; Wang, L. Y.; Li, Y.; Qin, M. L.; Qu, X. H. Tuning metallic Co0.85Se quantum dots/ carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 2019, 11, 96.

39

Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene- like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

40

Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

41

Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793-6801.

42

Su, C. Q.; Ru, Q.; Cheng, S. K.; Gao, Y. Q.; Chen, F. M.; Zhao, L. Z.; Ling, F. C. C. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage. Compos. Part B Eng. 2019, 179, 107538.

43

Zhang, Z. A.; Shi, X. D.; Yang, X. Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim. Acta 2016, 208, 238-243.

44

Yang, J.; Yang, N.; Xu, Q.; Pearlie, L. S.; Zhang, Y. Z.; Hong, Y.; Wang, Q.; Wang, W. J.; Yan, Q. Y.; Dong, X. C. Bioinspired controlled synthesis of NiSe/Ni2P nanoparticles decorated 3D porous carbon for Li/Na ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 13217- 13225.

File
12274_2021_3657_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2021
Revised: 04 June 2021
Accepted: 06 June 2021
Published: 08 July 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by Academy of Sciences large apparatus United Fund (No. U1832187), the National Nature Science Foundation of China (No. 22071135), and the Nature Science Foundation of Shandong Province (No. ZR2019MEM030).

Return