Journal Home > Volume 14 , Issue 10

Surface Lewis acid-base sites in crystal structure may influence the physicochemical properties and the catalytic performances in nanozymes. Understanding the synergistic effect mechanism of Co3O4 nanozymes towards substances (3, 3o, 5, 5o-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2)) induced by surface Lewis acid-base sites is important to enhance the efficiency for peroxidase-like reaction. Herein, ultrathin porous Co3O4 nanosheets with abundant Lewis acid-base sites were prepared by sodium borohydride (NaBH4) reduction treatment, which exhibited high-efficiency peroxidase-like activity compared with original Co3O4 nanosheets. The Lewis acid-base sites for ultrathin porous Co3O4 nanosheets nanozyme were owing to the coordination unsaturation of Co ions and the formation of defect structure. Ultrathin porous Co3O4 nanosheets had 18.26-fold higher catalytic efficiency (1.27×10-2 s-1dmM-1) than that of original Co3O4 (6.95×10-4 s-1dmM-1) in oxidizing TMB substrate. The synergistic effect of surface acid and base sites can enhance the interfacial electron transfer process of Co3O4 nanosheets, which can be a favor of absorption substrates and the generation of reactive intermediates such as radicals. Furthermore, the limit of detection of hydroquinol was 0.58 μM for ultrathin porous Co3O4 nanosheets, 965-fold lower than original Co3O4 (560 μM). Besides, the linear range of ultrathin porous Co3O4 nanosheets was widely with the concentration of 5.0-1, 000 μM. Colorimetric detection of hydroquinol by agarose-based hydrogel membrane was provided based on excellent peroxidase-like properties. This study provided insights into designing high-performance nanozymes for peroxidase-like catalysis via a strategy of solid surface acid-base sites engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity

Show Author's information Wenhui LuMing YuanJing ChenJiaxin ZhangLingshuai KongZhenyu FengXicheng MaJie SuJinhua Zhan( )
Key Laboratory of Colloid and Interface Chemistry,Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University,Jinan,250100,China;

Abstract

Surface Lewis acid-base sites in crystal structure may influence the physicochemical properties and the catalytic performances in nanozymes. Understanding the synergistic effect mechanism of Co3O4 nanozymes towards substances (3, 3o, 5, 5o-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2)) induced by surface Lewis acid-base sites is important to enhance the efficiency for peroxidase-like reaction. Herein, ultrathin porous Co3O4 nanosheets with abundant Lewis acid-base sites were prepared by sodium borohydride (NaBH4) reduction treatment, which exhibited high-efficiency peroxidase-like activity compared with original Co3O4 nanosheets. The Lewis acid-base sites for ultrathin porous Co3O4 nanosheets nanozyme were owing to the coordination unsaturation of Co ions and the formation of defect structure. Ultrathin porous Co3O4 nanosheets had 18.26-fold higher catalytic efficiency (1.27×10-2 s-1dmM-1) than that of original Co3O4 (6.95×10-4 s-1dmM-1) in oxidizing TMB substrate. The synergistic effect of surface acid and base sites can enhance the interfacial electron transfer process of Co3O4 nanosheets, which can be a favor of absorption substrates and the generation of reactive intermediates such as radicals. Furthermore, the limit of detection of hydroquinol was 0.58 μM for ultrathin porous Co3O4 nanosheets, 965-fold lower than original Co3O4 (560 μM). Besides, the linear range of ultrathin porous Co3O4 nanosheets was widely with the concentration of 5.0-1, 000 μM. Colorimetric detection of hydroquinol by agarose-based hydrogel membrane was provided based on excellent peroxidase-like properties. This study provided insights into designing high-performance nanozymes for peroxidase-like catalysis via a strategy of solid surface acid-base sites engineering.

Keywords: cobalt oxide, nanozyme, colorimetric sensor, peroxidase-like, Lewis acid-base sites, hydroquinol

References(65)

1
Yan, X. Y. Nanostructure Science and Technology; Springer: Singapore, 2020.
2

Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (Ⅱ). Chem. Soc. Rev. 2019, 48, 1004-1076.

3

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506-1520.

4

McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019, 12, 509-516.

5

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.

6

Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

7

Cui, S. Q.; Zhang, J. J.; Ding, Y. P.; Gu, S. Q.; Hu, P.; Hu, Z. Q. Rectangular flake-like mesoporous NiCo2O4 as enzyme mimic for glucose biosensing and biofuel cell. Sci. China Mater. 2017, 60, 766-776.

8

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190-2200.

9

Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412-5419.

10

Lu, W. H.; Zhang, J. X.; Li, N. L.; You, Z.; Feng, Z. Y.; Natarajan, V.; Chen, J.; Zhan, J. H. Co3O4@β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuators B Chem. 2020, 303, 127106.

11

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J. W.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

12

Wang, X. Y.; Gao, X. J.; Qin, L.; Wang, C. D.; Song, L.; Zhou, Y. N.; Zhu, G. Y.; Cao, W.; Lin, S. C.; Zhou, L. Q. et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 2019, 10, 704.

13

Meng, Y. X.; Zhao, K. F.; Zhang, Z. K.; Gao, P.; Yuan, J.; Cai, T.; Tong, Q.; Huang, G.; He, D. N. Effects of crystal structure on the activity of MnO2 nanorods oxidase mimics. Nano Res. 2020, 13, 709-718.

14

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125-1148.

15
Wang X. Y., Guo W. J., Hu Y. H., Wu J. J. X., Wei, H. Nanozymes: Next Wave of Artificial Enzymes; Springer: Berlin, Heidelberg, 2016.https://doi.org/10.1007/978-3-662-53068-9
DOI
16

Hao, Z. F.; Shen, Z. R.; Li, Y.; Wang, H. T.; Zheng, L. R.; Wang, R. H.; Liu, G. Q.; Zhan, S. H. The role of alkali metal in α-MnO2 catalyzed ammonia-selective catalysis. Angew. Chem. , Int. Ed. 2019, 58, 6351- 6356.

17

Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437-440.

18

Geng, Z.; Li, B.; Liu, H. Z.; Lv, H.; Xiao, Q. F.; Ji, Y. J.; Zhang, C. M. Oxygen-doped carbon host with enhanced bonding and electron attraction abilities for efficient and stable SnO2/carbon composite battery anode. Sci. China Mater. 2018, 61, 1067-1077.

19

Wang, H. L.; Zhang, W. N.; Lu, L.; Liu, D. P.; Liu, D. D.; Li, T. Z.; Yan, S. C.; Zhao, S. Q.; Zou, Z. G. Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO. Appl. Catal. B Environ. 2021, 283, 119639.

20

Chen, J. X.; Huang, L.; Wang, Q. Q.; Wu, W. W.; Zhang, H.; Fang, Y. X.; Dong, S. J. Bio-inspired nanozyme: A hydratase mimic in a zeolitic imidazolate framework. Nanoscale 2019, 11, 5960-5966.

21

Thiyam, D. S.; Nongmeikapam, A. C.; Nandeibam, A. D.; Heikham, F. D.; Henam, P. S. Biosynthesized quantum dot Size Cu nanocatalyst: Peroxidase mimetic and aqueous phase conversion of fructose. ChemistrySelect 2018, 3, 12183-12191.

22
Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases Their Catalytic Properties; Zheng, L. B.; Wang, G. W.; Zhang, Y. Z.; Ying, M. L.; Xu, B. Q., trans.; Chemical Industry Press: Beijing, 1989.
23

Dong, J. L.; Song, L. N.; Yin, J. J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959-1970.

24

Wang, Q. Q.; Chen, J. X.; Zhang, H.; Wu, W. W.; Zhang, Z. Q.; Dong, S. J. Porous Co3O4 nanoplates with pH-switchable peroxidase-and catalase-like activity. Nanoscale 2018, 10, 19140-19146.

25

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2016, 55, 5277-5281.

26

Anipsitakis, G. P.; Dionysiou, D. D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705-3712.

27

Huang, Z. Q.; Liu, L. P.; Qi, S. T.; Zhang, S.; Qu, Y. Q.; Chang, C. R. Understanding all-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal. 2018, 8, 546-554.

28

Badoei-Dalfard, A.; Sohrabi, N.; Karami, Z.; Sargazi, G. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/ Th-MOF for uric acid sensing in biological samples. Biosens. Bioelectron. 2019, 141, 111420.

29

Yan, F.; Luo, T.; Jin, Q. F.; Zhou, H. X.; Sailjoi, A.; Dong, G. T.; Liu, J. Y.; Tang, W. Z. Tailoring molecular permeability of vertically-ordered mesoporous silica-nanochannel films on graphene for selectively enhanced determination of dihydroxybenzene isomers in environmental water samples. J. Hazard. Mater. 2021, 410, 124636.

30

Shi, B. F.; Su, Y. B.; Zhao, J. J.; Liu, R. J.; Zhao, Y.; Zhao, S. L. Visual discrimination of dihydroxybenzene isomers based on a nitrogen-doped graphene quantum dot-silver nanoparticle hybrid. Nanoscale 2015, 7, 17350-17358.

31

Palanisamy, S.; Thangavelu, K.; Chen, S. M.; Thirumalraj, B.; Liu, X. H. Preparation and characterization of gold nanoparticles decorated on graphene oxide@polydopamine composite: Application for sensitive and low potential detection of catechol. Sens. Actuators B Chem. 2016, 233, 298-306.

32

Chen, X.; Parker, S. G.; Zou, G.; Su, W.; Zhang, Q. J. β-Cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 2010, 4, 6387-6394.

33

Wang, X. L.; Cheng, Z. L.; Zhou, Y.; Tammina, S. K.; Yang, Y. L. A double carbon dot system composed of N, Cl-doped carbon dots and N, Cu-doped carbon dots as peroxidase mimics and as fluorescent probes for the determination of hydroquinone by fluorescence. Microchim. Acta 2020, 187, 350.

34

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206-2210.

35

Liang, M. M.; Fan, K. L.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. L.; Lu, D.; Feng, J.; Zhao, J. J.; Yang, L. et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2013, 85, 308-312.

36

Song, Y. J.; Wei, W. L.; Qu, X. G. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215-4236.

37

Yan, X.; Song, Y.; Wu, X. L.; Zhu, C. Z.; Su, X. G.; Du, D.; Lin, Y. H. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 2017, 9, 2317-2323.

38

Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. , Int. Ed. 2015, 54, 7176- 7180.

39

Zheng, Y.; Gao, R.; Zheng, L. R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium-oxygen batteries. ACS Catal. 2019, 9, 3773-3782.

40

Wei, R. J.; Fang, M.; Dong, G. F.; Lan, C. Y.; Shu, L.; Zhang, H.; Bu, X. M.; Ho, J. C. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 7079-7086.

41

Wang, X Y.; Li, X. Y.; Mu, J. C.; Fan, S. Y.; Chen, X.; Wang, L.; Yin, Z. F.; Tadé, M.; Liu, S. M. Oxygen vacancy-rich porous Co3O4 nanosheets toward boosted NO reduction by CO and CO oxidation: Insights into the structure-activity relationship and performance enhancement mechanism. ACS Appl. Mater. Interfaces 2019, 11, 41988-41999.

42

Nassar, M. Y. Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method. Mater. Lett. 2013, 94, 112-115.

43

Yuan, H. Y.; Aljneibi, S. A. A. A.; Yuan, J. R.; Wang, Y. X.; Liu, H.; Fang, J.; Tang, C. H.; Yan, X. H.; Cai, H.; Gu, Y. D. et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 2019, 31, 1807161.

44

Kuchma, M. H.; Komanski, C. B.; Colon, J.; Teblum, A.; Masunov, A. E.; Alvarado, B.; Babu, S.; Seal, S.; Summy, J.; Baker, C. H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed: Nanotechnol. Biol. Med. 2010, 6, 738-744.

45

Menezes, P. W.; Indra, A.; Gutkin, V.; Driess, M. Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem. Commun. 2017, 53, 8018-8021.

46

Lima, T. M.; de Macedo, V.; Silva, D. S. A.; Castelblanco, W. N.; Pereira, C. A.; Roncolatto, R. E.; Gawande, M. B.; Zbořil, R.; Varma, R. S.; Urquieta-González, E. A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation. Appl. Catal. B Environ. 2020, 277, 119248.

47

Xu, L. L.; Zhao, R. R.; Zhang, W. P. One-step high-yield production of renewable propene from bioethanol over composite ZnCeOx oxide and HBeta zeolite with balanced Brönsted/Lewis acidity. Appl. Catal. B Environ. 2020, 279, 119389.

48

Han, L. P.; Gao, M.; Feng, C.; Shi, L. Y.; Zhang, D. S. Fe2O3-CeO2@Al2O3 nanoarrays on Al-Mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3. Environ. Sci. Technol. 2019, 53, 5946-5956.

49

Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem. , Int. Ed. 2018, 57, 122-138.

50

Orecchia, P.; Yuan, W. M.; Oestreich, M. Transfer hydrocyanation of α-and α, β-substituted styrenes catalyzed by boron lewis acids. Angew. Chem. , Int. Ed. 2019, 58, 3579-3583.

51

Al-Fatesh, A. S.; Arafat, Y.; Kasim, S. O.; Ibrahim, A. A.; Abasaeed, A. E.; Fakeeha, A. H. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B Environ. 2021, 280, 119445.

52

Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Appl. Catal. B Environ. 2020, 264, 118494.

53

Al-Fatesh, A. S.; Naeem, M. A.; Fakeeha, A. H.; Abasaeed, A. E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chin. J. Chem. Eng. 2014, 22, 28-37.

54

Muroyama, H.; Tsuda, Y.; Asakoshi, T.; Masitah, H.; Okanishi, T.; Matsui, T.; Eguchi, K. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 2016, 343, 178-184.

55

Kumar, P.; With, P.; Srivastava, V. C.; Gläser, R.; Mishra, I. M. Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: Characterization, catalytic activity and thermodynamic study. J. Alloys Compd. 2017, 696, 718-726.

56

Nizio, M.; Albarazi, A.; Cavadias, S.; Amouroux, J.; Galvez, M. E.; Da Costa, P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int. J. Hydrog. Energy 2016, 41, 11584-11592.

57

Wu, Z. L.; Mann, A. K. P.; Li, M. J.; Overbury, S. H. Spectroscopic investigation of surface-dependent acid-base property of ceria nanoshapes. J. Phys. Chem. C 2015, 119, 7340-7350.

58

Bistey, T.; Nagy, I. P.; Simó, A.; Hegedűs, C. In vitro FT-IR study of the effects of hydrogen peroxide on superficial tooth enamel. J. Dent. 2007, 35, 325-330.

59

Zhang, X.; Yang, Q.; Lang, Y. H.; Jiang, X.; Wu, P. Rationale of 3, 3', 5, 5'-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal. Chem. 2020, 92, 12400-12406.

60

Ling, S. K.; Wang, S. B.; Peng, Y. L. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J. Hazard. Mater. 2010, 178, 385-389.

61

Zhou, X. J.; Kong, L. S.; Jing, Z. Y.; Wang, S. Q.; Lai, Y. C.; Xie, M.; Ma, L.; Feng, Z. Y.; Zhan, J. H. Facile synthesis of superparamagnetic β-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2, 4-dichlorophenol: Structure, performance, and mechanism. J. Hazard. Mater. 2020, 394, 122528.

62

Eberhardt, M. K.; Santos, C.; Soto, M. A. Formation of hydroxyl radicals and Co3+ in the reaction of Co2+-EDTA with hydrogen peroxide. Catalytic effect of Fe3+. Biochim. Biophys. Acta Gen. Subj. 1993, 1157, 102-106.

63

Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo-and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. , Int. Ed. 2017, 56, 11860-11864.

64

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.

65

Dutta, A. K.; Das, S.; Samanta, S.; Samanta, P. K.; Adhikary, B.; Biswas, P. CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta 2013, 107, 361-367.

File
12274_2021_3656_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 March 2021
Revised: 03 June 2021
Accepted: 06 June 2021
Published: 06 July 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21876099), Shandong Provincial Natural Science Foundation (No. ZR2017PB007), and Shandong Provincial Key Laboratory Project of Test Technology for Material Chemical Safety (No. 2018SDCLHX005).

Return