Journal Home > Volume 15 , Issue 2

Whitlockite (WH, Ca18Mg2(HPO4)2(PO4)12) is an important inorganic phase in human bones and has positive significance for participating in the bone reconstruction process. In this paper, we report different doping strategies to prepare WH and WH-Ln (Eu/Tb) nanocrystals, and have successfully synthesized WH-Ln (Eu/Tb) nanoparticles (NPs) with bright red or green fluorescence based on ions exchange doping by two-step hydrothermal reaction. WH-5%Ln (Eu/Tb) NPs with the best fluorescence properties were successfully applied to live cell imaging, and WH-5%Eu NPs were implanted into the bone defect site in rabbit femoral condyles to visually observe its degradation process. The related results would help us understand WH nanocrystals and further expand their potential applications in tissue engineering and related fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Eu3+/Tb3+-doped whitlockite nanocrystals: Controllable synthesis, cell imaging, and the degradation process in the bone reconstruction

Show Author's information Zichen Yang1Tianyu Yao1Xiaoyan Zheng1,2( )Junfeng Hui1Daidi Fan1( )
Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation EngineeringSchool of Chemical Engineering, Northwest UniversityXi'an710069China
College of Life SciencesNorthwest UniversityXi'an710069China

Abstract

Whitlockite (WH, Ca18Mg2(HPO4)2(PO4)12) is an important inorganic phase in human bones and has positive significance for participating in the bone reconstruction process. In this paper, we report different doping strategies to prepare WH and WH-Ln (Eu/Tb) nanocrystals, and have successfully synthesized WH-Ln (Eu/Tb) nanoparticles (NPs) with bright red or green fluorescence based on ions exchange doping by two-step hydrothermal reaction. WH-5%Ln (Eu/Tb) NPs with the best fluorescence properties were successfully applied to live cell imaging, and WH-5%Eu NPs were implanted into the bone defect site in rabbit femoral condyles to visually observe its degradation process. The related results would help us understand WH nanocrystals and further expand their potential applications in tissue engineering and related fields.

Keywords: controllable synthesis, cell imaging, whitlockite, ions doping, degradation process

References(33)

1

Lei, C.; Cao, Y. X.; Hosseinpour, S.; Gao, F.; Liu, J. Y.; Fu, J. Y.; Staples, R.; Ivanovski, S.; Xu, C. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 2020, 14, 770-777.

2

Shao, N. N.; Guo, J. S.; Guan, Y. Y.; Zhang, H. H.; Li, X. Y.; Chen, X. S.; Zhou, D. F.; Huang, Y. B. Development of organic/inorganic compatible and sustainably bioactive composites for effective bone regeneration. Biomacromolecules 2018, 19, 3637-3648.

3

Esposti, M. D.; Chiellini, F.; Bondioli, F.; Morselli, D.; Fabbri, P. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Mater. Sci. Eng. C 2019, 100, 286-296.

4

Hui, J. F.; Wang, X. Luminescent, colloidal, F-substituted, hydroxyapatite nanocrystals. Chem. Eur. J. 2011, 17, 6926-6930.

5

Li, X. Y.; Zou, Q.; Li, W.; Chen, H. F. Intracellular interaction of hydroxyapatite-based Nanocrystals with uniform shape and traceable fluorescence. Inorg. Chem. 2018, 57, 13739-13748.

6

Li, Z. T.; Tang, J. Q.; Wu, H. F.; Ling, Z. X.; Chen, S. Y.; Zhou, Y.; Guo, B.; Yang, X.; Zhu, X. D.; Wang, L. et al. A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma. Nano Res. 2020, 13, 2106-2117.

7

Kim, H. D.; Jang, H. L.; Ahn, H. Y.; Lee, H. K.; Park, J.; Lee, E. S.; Lee, E. A.; Jeong, Y. H.; Kim, D. G.; Nam, K. T. et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2017, 112, 31-43.

8

Jang, H. L.; Jin, K.; Lee, J.; Kim, Y.; Nahm, S. H.; Hong, K. S.; Nam, K. T. Revisiting whitlockite, the second most abundant biomineral in bone: Nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 2014, 8, 634-641.

9

Hu, M.; Xiao, F.; Ke, Q. F.; Li, Y.; Chen, X. D.; Guo, Y. P. Cerium-doped whitlockite nanohybrid scaffolds promote new bone regeneration via SMAD signaling pathway. Chem. Eng. J. 2019, 359, 1-12.

10

Guo, X. H.; Liu, X.; Gao, H. C.; Shi, X. T.; Zhao, N. R.; Wang, Y. J. Hydrothermal growth of whitlockite coating on β-tricalcium phosphate surfaces for enhancing bone repair potential. J. Mater. Sci. Technol. 2018, 34, 1054-1059.

11

Cheng, H.; Chabok, R.; Guan, X. F.; Chawla, A.; Li, Y. X.; Khademhosseini, A.; Jang, H. L. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018, 69, 342-351.

12

Jang, H. L.; Zheng, G. B.; Park, J.; Kim, H. D.; Baek, H. R.; Lee, H. K.; Lee, K.; Han, H. N.; Lee, C. K.; Hwang, N. S. et al. In vitro and in vivo evaluation of whitlockite biocompatibility: Comparative study with hydroxyapatite and β-tricalcium phosphate. Adv Healthc. Mater. 2016, 5, 128-136.

13

Gopal, R.; Calvo, C. Structural relationship of whitlockite and βCa3(PO4)2. Nat. Phys. Sci. 1972, 237, 30-32.

14

Wang, C. F.; Jeong, K. J.; Park, H. J.; Lee, M.; Ryu, S. C.; Hwang, D. Y.; Nam, K. H.; Han, I. H.; Lee, J. Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. J. Colloid. Interface. Sci. 2020, 569, 1-11.

15

Zhu, Z.; Jiang, S. K.; Liu, Y. H.; Gao, X. M.; Hu, S. S.; Zhang, X.; Huang, C.; Wan, Q. B.; Wang, J.; Pei, X. B. Micro or Nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Res. 2020, 13, 511-526.

16

Staiger, M. P.; Pietak, A. M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728-1734.

17

Zhang, H. X.; Chen, Z. H.; Xuan, L.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795-1809.

18

Zhong, Y. T.; Dai, H. J. A mini-review on rare-earth down-conversion nanoparticles for NIR-Ⅱ imaging of biological systems. Nano Res. 2020, 13, 1281-1294.

19

Sui, J. S.; Yan, J. Y.; Wang, K.; Luo, G. S. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res. 2020, 13, 2837-2846.

20

Qu, X. Y.; Liu, Z. Q.; Ma, B. H.; Li, N.; Zhao, H. Y.; Yang, T.; Xue, Y. M.; Zhang, X. Z.; Shao, Y. P.; Chang, Y. et al. All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Res. 2018, 12, 593-599.

21

Hong, E. L.; Liu, L. M.; Bai, L. M.; Xia, C. H.; Gao, L.; Zhang, L. W.; Wang, B. Q. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mater. Sci. Eng. C 2019, 105, 110097.

22

Zhang, X.; He, S. Q.; Ding, B. B.; Qu, C. R.; Zhang, Q.; Chen, H.; Sun, Y.; Fang, H. Y.; Long, Y.; Zhang, R. P. et al. Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-Ⅱ imaging window. Chem. Eng. J. 2020, 385, 123959.

23

Skripka, A.; Karabanovas, V.; Jarockyte, G.; Marin, R.; Tam, V.; Cerruti, M.; Rotomskis, R.; Vetrone, F. Decoupling theranostics with rare earth doped nanoparticles. Adv. Funct. Mater. 2019, 29, 1807105.

24

Jain, A.; Fournier, P. G. J.; Mendoza-Lavaniegos, V.; Sengar, P.; Guerra-Olvera, F. M.; Iñiguez, E.; Kretzschmar, T. G.; Hirata, G. A.; Juárez, P. Functionalized rare earth-doped nanoparticles for breast cancer nanodiagnostic using fluorescence and CT imaging. J. Nanobiotechnol. 2018, 16, 26.

25

Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.

26

Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322-1331.

27

Hsiao, S. M.; Peng, B. Y.; Tseng, Y. S.; Liu, H. T.; Chen, C. H.; Lin, H. M. Preparation and characterization of multifunctional mesoporous silica nanoparticles for dual magnetic resonance and fluorescence imaging in targeted cancer therapy. Microporous Mesoporous Mater. 2017, 250, 210-220.

28

Zheng, X. Y.; Liu, M. Y.; Hui, J. F.; Fan, D. D.; Ma, H. X.; Zhang, X. Y.; Wang, Y. Y.; Wei, Y. Ln3+-doped hydroxyapatite nanocrystals: Controllable synthesis and cell imaging. Phys. Chem. Chem. Phys. 2015, 17, 20301-20307.

29

Li, X. Y.; Zou, Q.; Chen, H. F.; Li, W. In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite. Sci. Adv. 2019, 5, eaay6484.

30

Qi, C.; Zhu, Y. J.; Chen, F.; Wu, J. Porous microspheres of magnesium whitlockite and amorphous calcium magnesium phosphate: Microwave-assisted rapid synthesis using creatine phosphate, and application in drug delivery. J. Mater. Chem. B 2015, 3, 7775-7786.

31

Jang, H. L.; Lee, H. K.; Jin, K.; Ahn, H. Y.; Lee, H. E.; Nam, K. T. Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J. Mater. Chem. B 2015, 3, 1342-1349.

32

Zhang, Z. W.; Ren, Y. J.; Liu, L.; Zhang, J. P.; Peng, Y. S. Synthesis and luminescence of Eu3+-doped in triple phosphate Ca8MgBi(PO4)7 with whitlockite structure. Luminescence 2015, 30, 1190-1194.

33

Hui, J. F.; Zhang, X. Y.; Zhang, Z. C.; Wang, S. Q.; Tao, L.; Wei, L.; Wang, X. Fluoridated HAp: Ln3+ (Ln=Eu or Tb) nanoparticles for cell-imaging. Nanoscale 2012, 4, 6967-6970.

File
12274_2021_3654_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 April 2021
Revised: 02 June 2021
Accepted: 04 June 2021
Published: 11 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22078265, 21908179, and 21838009), and the Shaanxi Provincial Science Foundation (Nos. 2017SF-201 and 2018JQ2052).

Return