Journal Home > Volume 15 , Issue 2

The synthesis of ultrathin rhenium disulfide (ReS2) nanoribbons within single-walled carbon nanotubes (SWNTs) has been established. Dirhenium decacarbonyl complex is encapsulated into the SWNTs to provide a source of confined rhenium atoms, which readily react with iodine to form discrete nm-sized clusters of rhenium iodide [Re6I14]2- embedded in the nanotubes. The final step of the synthesis is accomplished by admitting hydrogen sulfide gas into nano test tubes, yielding twisted nanoribbons of rhenium disulfide encapsulated in carbon nanotubes, ReS2@SWNTs. The width, structure, and composition of rhenium disulfide nanoribbons are strictly controlled by the extreme confinement of the host-SWNT. A holistic analytical approach combining complementary imaging and analysis methods is used at each synthetic step to elucidate the structure and composition of the guest material and reveal the role of the SWNT contributing towards the electronic interactions with encapsulated inorganic structures. As ReS2 nanoribbons are expected to retain the electronic properties of the bulk material, such as direct bandgap, the low dimensional form of this material can be of interest for use in nanoscale electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes

Show Author's information Luke T. Norman1Johannes Biskupek2Graham A. Rance3Craig T. Stoppiello3Ute Kaiser2Andrei N. Khlobystov1( )
School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
Central Facility for Electron MicroscopyUlm University, Albert Einstein-Allee 11Ulm89081Germany
Nanoscale and Microscale Research CentreUniversity of NottinghamNottinghamNG7 2RDUK

Abstract

The synthesis of ultrathin rhenium disulfide (ReS2) nanoribbons within single-walled carbon nanotubes (SWNTs) has been established. Dirhenium decacarbonyl complex is encapsulated into the SWNTs to provide a source of confined rhenium atoms, which readily react with iodine to form discrete nm-sized clusters of rhenium iodide [Re6I14]2- embedded in the nanotubes. The final step of the synthesis is accomplished by admitting hydrogen sulfide gas into nano test tubes, yielding twisted nanoribbons of rhenium disulfide encapsulated in carbon nanotubes, ReS2@SWNTs. The width, structure, and composition of rhenium disulfide nanoribbons are strictly controlled by the extreme confinement of the host-SWNT. A holistic analytical approach combining complementary imaging and analysis methods is used at each synthetic step to elucidate the structure and composition of the guest material and reveal the role of the SWNT contributing towards the electronic interactions with encapsulated inorganic structures. As ReS2 nanoribbons are expected to retain the electronic properties of the bulk material, such as direct bandgap, the low dimensional form of this material can be of interest for use in nanoscale electronic devices.

Keywords: nanotubes, microscopy, spectroscopy, nanoribbons, confinement, rhenium

References(41)

1

Rahman, M.; Davey, K.; Qiao, S. Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129.

2

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

3

Feng, Y. Q.; Zhou, W.; Wang, Y. J.; Zhou, J.; Liu, E. F.; Fu, Y. J.; Ni, Z. H.; Wu, X. L.; Yuan, H. T.; Miao, F. et al. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B 2015, 92, 054110.

4

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

5

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

6

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.

7

Murray, H. H.; Kelty, S. P.; Chianelli, R. R.; Day, C. S. Structure of rhenium disulfide. Inorg. Chem. 1994, 33, 4418-4420.

8

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667-5672.

9

Brorson, M.; Hansen, T. W.; Jacobsen, C. J. H. Rhenium(Ⅳ) sulfide nanotubes. J. Am. Chem. Soc. 2002, 124, 11582-11583.

10

Tu, W. X.; Denizot, B. Synthesis of small-sized rhenium sulfide colloidal nanoparticles. J. Colloid Interface Sci. 2007, 310, 167-170.

11

An, Q. W.; Liu, Y.; Jiang, R. J.; Meng, X. Q. Chemical vapor deposition growth of ReS2 nanowires for high-performance nanostructured photodetector. Nanoscale 2018, 10, 14976-14983.

12

He, X. X.; Liu, F. C.; Hu, P.; Fu, W.; Wang, X. L.; Zeng, Q. S.; Zhao, W.; Liu, Z. Chemical vapor deposition of high-quality and atomically layered ReS2. Small 2015, 11, 5423-5429.

13

Yu, Z. G.; Cai, Y. Q.; Zhang, Y. W. Robust direct bandgap characteristics of one- and two-dimensional ReS2. Sci. Rep. 2015, 5, 13783.

14

Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59-62.

15

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603-605.

16

Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605-607.

17

Sloan, J.; Grosvenor, S. J.; Friedrichs, S.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. A one-dimensional BaI2 chain with five- and six-coordination, formed within a single-walled carbon nanotube. Angew. Chem., Int. Ed. 2002, 41, 1156-1159.

DOI
18

Slade, C. A.; Sanchez, A. M.; Sloan, J. Unprecedented new crystalline forms of SnSe in narrow to medium diameter carbon nanotubes. Nano Lett. 2019, 19, 2979-2984.

19

Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 1998, 396, 323-324.

20

Allen, C. S.; Ito, Y.; Robertson, A. W.; Shinohara, H.; Warner, J. H. Two-dimensional coalescence dynamics of encapsulated metallofullerenes in carbon nanotubes. ACS Nano 2011, 5, 10084-10089.

21

Sloan, J.; Novotny, M. C.; Bailey, S. R.; Brown, G.; Xu, C.; Williams, V. C.; Friedrichs, S.; Flahaut, E.; Callender, R. L.; York, A. P. E. et al. Two layer 4: 4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem. Phys. Lett. 2000, 329, 61-65.

22

Bendall, J. S.; Ilie, A.; Welland, M. E.; Sloan, J.; Green, M. L. H. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 6569-6573.

23

Eliseev, A. A.; Yashina, L. V.; Brzhezinskaya, M. M.; Chernysheva, M. V.; Kharlamova, M. V.; Verbitsky, N. I.; Lukashin, A. V.; Kiselev, N. A.; Kumskov, A. S.; Zakalyuhin, R. M. et al. Structure and electronic properties of AgX (x = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 2010, 48, 2708-2721.

24

Costa, P. M. F. J.; Sloan, J.; Rutherford, T.; Green, M. L. H. Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem. Mater. 2005, 17, 6579-6582.

25

Friedrichs, S.; Sloan, J.; Green, M. L. H.; Hutchison, J. L.; Meyer, R. R.; Kirkland, A. I. Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite. Phys. Rev. B 2001, 64, 045406.

26

Wang, J. W.; Kuimova, M. K.; Poliakoff, M.; Briggs, G. A. D.; Khlobystov, A. N. Encapsulation and IR probing of cube-shaped octasilasesquioxane H8Si8O12 in carbon nanotubes. Angew. Chem., Int. Ed. 2006, 45, 5188-5191.

27

Stoppiello, C. T.; Biskupek, J.; Li, Z. Y.; Rance, G. A.; Botos, A.; Fogarty, R. M.; Bourne, R. A.; Yuan, J.; Lovelock, K. R. J.; Thompson, P. et al. A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale 2017, 9, 14385-14394.

28

Chuvilin, A.; Bichoutskaia, E.; Gimenez-Lopez, M. C.; Chamberlain, T. W.; Rance, G. A.; Kuganathan, N.; Biskupek, J.; Kaiser, U.; Khlobystov, A. N. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 2011, 10, 687-692.

29

Eliseev, A. A.; Chernysheva, M. V.; Verbitskii, N. I.; Kiseleva, E. A.; Lukashin, A. V.; Tretyakov, Y. D.; Kiselev, N. A.; Zhigalina, O. M.; Zakalyukin, R. M.; Vasiliev, A. L. et al. Chemical reactions within single-walled carbon nanotube channels. Chem. Mater. 2009, 21, 5001-5003.

30

Wang, Z. Y.; Zhao, K. K.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Jin, Z. X. et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. J. Mater. Chem. 2011, 21, 171-180.

31

Botos, A.; Biskupek, J.; Chamberlain, T. W.; Rance, G. A.; Stoppiello, C. T.; Sloan, J.; Liu, Z.; Suenaga, K.; Kaiser, U.; Khlobystov, A. N. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 2016, 138, 8175-8183.

32

Qi, F.; He, J. R.; Chen, Y. F.; Zheng, B. J.; Li, Q.; Wang, X. Y.; Yu, B.; Lin, J.; Zhou, J. H.; Li, P. J. et al. Few-layered ReS2 nanosheets grown on carbon nanotubes: A highly efficient anode for high-performance lithium-ion batteries. Chem. Eng. J. 2017, 315, 10-17.

33

Linck, M.; Hartel, P.; Uhlemann, S.; Kahl, F.; Müller, H.; Zach, J.; Haider, M.; Niestadt, M.; Bischoff, M.; Biskupek, J. et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV. Phys. Rev. Lett. 2016, 117, 076101.

34

Rez, D.; Rez, P.; Grant, I. Dirac-fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Cryst. A 1994, 50, 481-497.

35

Cao, K. C.; Chamberlain, T. W.; Biskupek, J.; Zoberbier, T.; Kaiser, U.; Khlobystov, A. N. Direct correlation of carbon nanotube nucleation and growth with the atomic structure of rhenium nanocatalysts stimulated and imaged by the electron beam. Nano Lett. 2018, 18, 6334-6339.

36

Feltham, R. D.; Brant, P. XPS studies of core binding energies in transition metal complexes. 2. Ligand group shifts. J. Am. Chem. Soc. 1982, 104, 641-645.

37

Grigorian, L.; Williams, K. A.; Fang, S.; Sumanasekera, G. U.; Loper, A. L.; Dickey, E. C.; Pennycook, S. J.; Eklund, P. C. Reversible intercalation of charged iodine chains into carbon nanotube ropes. Phys. Rev. Lett. 1998, 80, 5560-5563.

38

Kharlamova, M. V. Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl. Phys. A 2016, 122, 791.

39

Davis, S. M. Photoemission studies of rhenium disulfide oxidation: Altered core-level structure and reactivity of defect sites. Catal. Lett. 1989, 2, 1-7.

40

Wang, Z. Y.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Gu, Z. N.; Zhou, J. et al. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 13840-13847.

41

Philp, E.; Sloan, J.; Kirkland, A. I.; Meyer, R. R.; Friedrichs, S.; Hutchison, J. L.; Green, M. L. H. An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat. Mater. 2003, 2, 788-791.

File
12274_2021_3650_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 April 2021
Revised: 01 June 2021
Accepted: 02 June 2021
Published: 06 September 2021
Issue date: February 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

L. T. N. and A. N. K. are grateful to the Nanoscale and Microscale Research Centre (nmRC) for access to equipment, as well as to the Engineering and Physical Sciences Research Council (EPSRC) and the University of Nottingham for funding. J.B. and U.K. are grateful for the financial support of the German Research Foundation (DFG) (No. 424798828).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return