Journal Home > Volume 14 , Issue 10

CsPbI3 perovskite quantum dots (QDs) have great potential in optoelectronic devices due to their suitable band-gaps, but low photoluminescence quantum yields (PLQYs) and poor phase stability seriously impede their practical application. This paper reports the synthesis of Ce3+-doped CsPbI3 QDs by a hot injection method. In the presence of the dopant (Ce3+), the highest PLQY of CsPbI3 QDs reached 99%, i.e., near-unity PLQY, and the photoluminescence (PL) emission of CsPbI3 QDs could be well maintained compared to that of the undoped ones. The photoluminescence kinetics of Ce3+-doped CsPbI3 QDs was investigated by the ultrafast transient absorption technologies, which exhibited that the Ce3+ not only increased the density of excitonic states close to the high energy excitonic states (HES), but also provided more emissive channels. Moreover, the radiative recombination rates calculated by the combination of PL lifetime and PLQY further illustrated the Pb2+ vacancies were filled with Ce3+ ions so that the PL quenching of the CsPbI3 QDs could be effectively prevented. The theoretic analysis uncovered the mechanism of the high PLQY and stable PL emission of the Ce3+-doped CsPbI3 QDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis and photoluminescence kinetics of Ce3+-doped CsPbI3 QDs with near-unity PLQY

Show Author's information Bowang ShuYajing ChangJinhua ZhangXiaopeng ChengDabin Yu( )
State Key Laboratory of Pulsed Power Laser Technology,National University of Defense Technology,Hefei,230037,China;

Abstract

CsPbI3 perovskite quantum dots (QDs) have great potential in optoelectronic devices due to their suitable band-gaps, but low photoluminescence quantum yields (PLQYs) and poor phase stability seriously impede their practical application. This paper reports the synthesis of Ce3+-doped CsPbI3 QDs by a hot injection method. In the presence of the dopant (Ce3+), the highest PLQY of CsPbI3 QDs reached 99%, i.e., near-unity PLQY, and the photoluminescence (PL) emission of CsPbI3 QDs could be well maintained compared to that of the undoped ones. The photoluminescence kinetics of Ce3+-doped CsPbI3 QDs was investigated by the ultrafast transient absorption technologies, which exhibited that the Ce3+ not only increased the density of excitonic states close to the high energy excitonic states (HES), but also provided more emissive channels. Moreover, the radiative recombination rates calculated by the combination of PL lifetime and PLQY further illustrated the Pb2+ vacancies were filled with Ce3+ ions so that the PL quenching of the CsPbI3 QDs could be effectively prevented. The theoretic analysis uncovered the mechanism of the high PLQY and stable PL emission of the Ce3+-doped CsPbI3 QDs.

Keywords: CsPbI3 quantum dots, Ce3+-doped CsPbI3, near-unity photoluminescence quantum yield (PLQY), photoluminescence kinetics

References(34)

1

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room- temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435- 2445.

2

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245-248.

3

Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067-2070.

4

Leung, S. F.; Ho, K. T.; Kung, P. K.; Hsiao, V. K. S.; Alshareef, H. N.; Wang, Z. L.; He, J. H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611.

5

Gao, Y. B.; Wu, Y. J.; Lu, H. B.; Chen, C.; Liu, Y.; Bai, X.; Yang, L. L.; Yu, W. W.; Dai, Q. L.; Zhang, Y. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 2019, 59, 517-526.

6

Jia, D. L.; Chen, J. X.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. L. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 2020, 16, 2001772.

7

Bi, C. H.; Kershaw, S. V.; Rogach, A. L.; Tian, J. J. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 2019, 29, 1902446.

8

Li, Y.; Zhang, C. H.; Zhang, X. X.; Huang, D.; Shen, Q.; Cheng, Y. C.; Huang, W. Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction. Appl. Phys. Lett. 2017, 111, 162106.

9

Wang, Y.; Chen, G. Y.; Ouyang, D.; He, X. J.; Li, C.; Ma, R. M.; Yin, W. J.; Choy, W. C. H. High phase stability in CsPbI3 enabled by Pb-I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv. Mater. 2020, 32, 2000186.

10

Zhang, J. J.; Yang, L.; Zhong, Y.; Hao, H. Q.; Yang, M.; Liu, R. Y. Improved phase stability of the CsPbI3 perovskite via organic cation doping. Phys. Chem. Chem. Phys. 2019, 21, 11175-11180.

11

Hassanabadi, E.; Latifi, M.; Gualdrón-Reyes, A. F.; Masi, S.; Yoon, S. J.; Poyatos, M.; Julián-López, B.; Mora-Seró, I. Ligand & band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbI3 quantum dots. Nanoscale 2020, 12, 14194- 14203.

12

Chen, C. S.; Li, D.; Wu, Y. H.; Chen, C.; Zhu, Z. G.; Shih, W. Y.; Shih, W. H. Flexible inorganic CsPbI3 perovskite nanocrystal-PMMA composite films with enhanced stability in air and water for white light-emitting diodes. Nanotechnology 2020, 31, 225602.

13

Chen, Y. K.; Jing, H. R.; Ling, F. L.; Kang, W.; Zhou, T. W.; Liu, X. Q.; Zeng, W.; Zhang, Y. X.; Qi, L.; Fang, L. et al. Tuning the electronic structures of all-inorganic lead halide perovskite CsPbI3 via heterovalent doping: A first-principles investigation. Chem. Phys. Lett. 2019, 722, 90-95.

14

Shen, X. Y.; Zhang, Y.; Kershaw, S. V.; Li, T. S.; Wang, C. C.; Zhang, X. Y.; Wang, W. Y.; Li, D. G.; Wang, Y. H.; Lu, M. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano. Lett. 2019, 19, 1552-1559.

15

Shi, J. W.; Li, F. C.; Yuan, J. Y.; Ling, X. F.; Zhou, S. J.; Qian, Y. L.; Ma, W. L. Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications. J. Mater. Chem. A 2019, 7, 20936-20944.

16

Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.

17

Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069-2079.

18

Liu, S. N.; Chen, Y.; Zhao, Y.; Xiang, W. D.; Liang, X. J. Doping and surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals for LEDs. Mater. Lett. 2020, 259, 126857.

19

Liu, M. L.; Jiang, N. Z.; Huang, H.; Lin, J. D.; Huang, F.; Zheng, Y. P.; Chen, D. Q. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices. Chem. Eng. J. 2021, 413, 127547.

20

Zhu, F. P.; Yong, Z. J.; Liu, B. M.; Chen, Y. M.; Zhou, Y.; Ma, J. P.; Sun, H. T.; Fang, Y. Z. Superbroad near-infrared photoluminescence from bismuth-doped CsPbI3 perovskite nanocrystals. Opt. Express 2017, 25, 33283-33289.

21

Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219-2227.

22

Xie, Y. J.; Peng, B.; Bravić, I.; Yu, Y.; Dong, Y. R.; Liang, R. Q.; Ou, Q. R.; Monserrat, B.; Zhang, S. Y. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv. Sci. 2020, 7, 2001698.

23

Yao, J. S.; Ge, J.; Han, B. N.; Wang, K. H.; Yao, H. B.; Yu, H. L.; Li, J. H.; Zhu, B. S.; Song, J. Z.; Chen, C. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 3626-3634.

24

Yin, J.; Ahmed, G. H.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite. ACS Energy Lett. 2019, 4, 789-795.

25

Yunakova, O. N.; Miloslavskii, V. K.; Kovalenko, E. N. The excitonic absorption spectrum of thin Ag2ZnI4 films. Phys. Solid State 2002, 44, 48-51.

26

Yunakova, O. N.; Miloslavskii, V. K.; Kovalenko, E. N. Exciton absorption spectrum of thin CsPbI3 and Cs4PbI6 films. Opt. Spectrosc. 2012, 112, 91-96.

27

Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982-988.

28

Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688-19695.

29

Liu, D. W.; Zha, W. Y.; Guo, Y. M.; Sa, R. J. Insight into the improved phase stability of CsPbI3 from first-principles calculations. ACS Omega 2020, 5, 893-896.

30

Liu, Q. H.; Wang, Y. H.; Sui, N.; Wang, Y. T.; Chi, X. C.; Wang, Q. Q.; Chen, Y.; Ji, W. Y.; Zou, L.; Zhang, H. Z. Exciton relaxation dynamics in photo-excited CsPbI3 perovskite nanocrystals. Sci. Rep. 2016, 6, 29442.

31

Mondal, N.; Samanta, A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale 2017, 9, 1878-1885.

32

Swarnkar, A.; Mir, W. J.; Nag, A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites? ACS Energy Lett. 2018, 3, 286-289.

33

Blasse, G.; Grabmaier, B. C. Luminescent Materials; Springer: Berlin, Heidelberg, 1994; p 64.

DOI
34

Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals. ACS Energy Lett. 2019, 4, 1610-1618.

File
12274_2021_3649_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 March 2021
Revised: 24 May 2021
Accepted: 02 June 2021
Published: 02 July 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgement

This work was finanicially supported by the Key Research and Development Project of Anhui Province of China (No. 1704a0902023), and the Open Research Fund of State Key Laboratory of Plused Power Laser Technology (No. SKL2019KF09). The authors would like to thank Chao Wang from Shiyanjia Lab (www.shiyanjia.com) for test of fs-TA.

Return