Journal Home > Volume 14 , Issue 10

Interfacial magnetism in functional oxide heterostructures not only exhibits intriguing physical phenomena but also implies great potential for device applications. In these systems, interfacial structural and electronic reconstructions are essential for improving the stability and tunability of the magnetic properties. In this work, we constructed ultra-thin La0.67Ca0.33MnO3 (LCMO) and SrRuO3 (SRO) layers into superlattices, which exhibited a robust ferromagnetic phase. The high Curie temperature (TC) reaches 291 K, more than 30 K higher than that of bulk LCMO. We found that the LCMO/SRO superlattices consisted of atomically-sharp and asymmetric heterointerfaces. Such a unique interface structure can trigger a sizable charge transfer as well as a ferroelectric-like polar distortion. These two interfacial effects cooperatively stabilized the high-TC ferromagnetic phase. Our results could pave a promising approach towards effective control of interfacial magnetism and new designs of oxide-based spintronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Asymmetric interfaces and high-TC ferromagnetic phase in La0.67Ca0.33MnO3/SrRuO3 superlattices

Show Author's information Lili Qu1,§Da Lan1,§Liang Si2,§Chao Ma3Shasha Wang4Liqiang Xu5Kexuan Zhang1Feng Jin1Zixun Zhang1Enda Hua1Binbin Chen1Guanyin Gao1Feng Chen4Haifeng Du4Karsten Held2Lingfei Wang1( )Wenbin Wu1( )
Hefei National Laboratory for Physical Science at the Microscale,University of Science and Technology of China, ,Hefei,230026,China;
Institut für Festkörperphysik,TU Wien,1040,Vienna, Austria ;
College of Materials Science and Engineering,Hunan University,Changsha,410082,China;
Anhui Key Laboratory of Condensed Matter Physics at the Extreme Conditions,High Magnetic Field Laboratory and Hefei Science Center, Chinese Academy of Sciences,Hefei,230031,China;
Insititutes of Physical Science and Information Technology,Anhui University,Hefei,230601,China;

§ Lili Qu, Da Lan, and Liang Si contributed equally to this work.

Abstract

Interfacial magnetism in functional oxide heterostructures not only exhibits intriguing physical phenomena but also implies great potential for device applications. In these systems, interfacial structural and electronic reconstructions are essential for improving the stability and tunability of the magnetic properties. In this work, we constructed ultra-thin La0.67Ca0.33MnO3 (LCMO) and SrRuO3 (SRO) layers into superlattices, which exhibited a robust ferromagnetic phase. The high Curie temperature (TC) reaches 291 K, more than 30 K higher than that of bulk LCMO. We found that the LCMO/SRO superlattices consisted of atomically-sharp and asymmetric heterointerfaces. Such a unique interface structure can trigger a sizable charge transfer as well as a ferroelectric-like polar distortion. These two interfacial effects cooperatively stabilized the high-TC ferromagnetic phase. Our results could pave a promising approach towards effective control of interfacial magnetism and new designs of oxide-based spintronic devices.

Keywords: charge transfer, oxide heterointerfaces, asymmetric interfacial effects, ferromagnetic order

References(73)

1

Reiner, J. W.; Walker, F. J.; Ahn, C. H. Atomically engineered oxide interfaces. Science 2009, 323, 1018-1019.

2

Yu, P.; Chu, Y. H.; Ramesh, R. Oxide interfaces: Pathways to novel phenomena. Mater. Today 2012, 15, 320-327.

3

Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103-113.

4

Chen, S. Q.; Yuan, S.; Hou, Z. P.; Tang, Y. L.; Zhang, J. P.; Wang, T.; Li, K.; Zhao, W. W.; Liu, X. J.; Chen, L. et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 2021, 33, 2000857.

5

Hong, S. S.; Gu, M. Q.; Verma, M.; Harbola, V.; Wang, B. Y.; Lu, D.; Vailionis, A.; Hikita, Y.; Pentcheva, R.; Rondinelli, J. M. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 2020, 368, 71-76.

6

Liu, L.; Qin, Q.; Lin, W. N.; Li, C. J.; Xie, Q. D.; He, S. K.; Shu, X. Y.; Zhou, C. H.; Lim, Z.; Yu, J. H. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 2019, 14, 939-944.

7

Yi, D.; Wang, Y. J.; Erve, O. M. J. V.; Xu, L. B.; Yuan, H. T.; Veit, M. J.; Balakrishnan, P. P.; Choi, Y.; N'Diaye, A. T.; Shafer, P. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 2020, 11, 902.

8

Zhang, J. D.; Tan, X. L.; Liu, M. K.; Teitelbaum, S. W.; Post, K. W.; Jin, F.; Nelson, K. A.; Basov, D. N.; Wu, W. B.; Averitt, R. D. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 2016, 15, 956-960.

9

Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G. S. D.; Fullerton, E. E.; Leighton, C.; MacDonald, A. H.; Ralph, D. C.; Arena, D. A.; Dürr, H. A. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006.

10

Ngai, J. H.; Walker, F. J.; Ahn, C. H. Correlated oxide physics and electronics. Annu. Rev. Mater. Sci. 2014, 44, 1-17.

11

Bibes, M.; Villegas, J. E.; Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 2011, 60, 5-84.

12

Huijben, M.; Martin, L. W.; Chu, Y. H.; Holcomb, M. B.; Yu, P.; Rijnders, G.; Blank, D. H. A.; Ramesh, R. Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 2008, 78, 094413.

13

Koohfar, S.; Georgescu, A. B.; Penn, A. N.; LeBeau, J. M.; Arenholz, E.; Kumah, D. P. Confinement of magnetism in atomically thin La0.7Sr0.3CrO3/La0.7Sr0.3MnO3 heterostructures. npj Quantum Mater. 2019, 4, 25.

14

Cao, L.; Petracic, O.; Zakalek, P.; Weber, A.; Rücker, U.; Schubert, J.; Koutsioubas, A.; Mattauch, S.; Brückel, T. Reversible control of physical properties via an oxygen-vacancy-driven topotactic transition in epitaxial La0.7Sr0.3MnO3-δ thin films. Adv. Mater. 2019, 31, 1806183.

15

Lee, H. G.; Wang, L. F.; Si, L.; He, X. Y.; Porter, D. G.; Kim, J. R.; Ko, E. K.; Kim, J.; Park, S. M.; Kim, B. et al. Atomic-scale metal- insulator transition in SrRuO3 ultrathin films triggered by surface termination conversion. Adv. Mater. 2020, 32, 1905815.

16

Biswas, A.; Rajeswari, M.; Srivastava, R. C.; Venkatesan, T.; Greene, R. L.; Lu, Q.; de Lozanne, A. L.; Millis, A. J. Strain-driven charge- ordered state in La0.67Ca0.33MnO3. Phys. Rev. B 2001, 63, 184424.

17

Chen, H. H.; Millis, A. Charge transfer driven emergent phenomena in oxide heterostructures. J. Phys. Condens. Matter 2017, 29, 243001.

18

Zhong, Z. C.; Hansmann, P. Band alignment and charge transfer in complex oxide interfaces. Phys. Rev. X 2017, 7, 011023.

19

Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Appl. Phys. Lett. 2001, 79, 1324-1326.

20

Nichols, J.; Gao, X.; Lee, S.; Meyer, T. L.; Freeland, J. W.; Lauter, V.; Yi, D.; Liu, J.; Haskel, D.; Petrie, J. R. et al. Emerging magnetism and anomalous Hall effect in iridate-manganite heterostructures. Nat. Commun. 2016, 7, 12721.

21

Wang, L. F.; Feng, Q. Y.; Kim, Y.; Kim, R.; Lee, K. H.; Pollard, S. D.; Shin, Y. J.; Zhou, H. B.; Peng, W.; Lee, D. et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 2018, 17, 1087-1094.

22

Meng, M.; Wang, Z.; Fathima, A.; Ghosh, S.; Saghayezhian, M.; Taylor, J.; Jin, R. Y.; Zhu, Y. M.; Pantelides, S. T.; Zhang, J. D. et al. Interface-induced magnetic polar metal phase in complex oxides. Nat. Commun. 2019, 10, 5248.

23

Kan, D.; Aso, R.; Sato, R.; Haruta, M.; Kurata, H.; Shimakawa, Y. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 2016, 15, 432-437.

24

Basletic, M.; Maurice, J. L.; Carrétéro, C.; Herranz, G.; Copie, O.; Bibes, M.; Jacquet, É.; Bouzehouane, K.; Fusil, S.; Barthélémy, A. Mapping the spatial distribution of charge carriers in LaAlO3/ SrTiO3 heterostructures. Nat. Mater. 2008, 7, 621-625.

25

Jia, C. L.; Mi, S. B.; Faley, M.; Poppe, U.; Schubert, J.; Urban, K. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh- resolution transmission electron microscopy. Phys. Rev. B 2009, 79, 081405.

26

Chen, P. F.; Chen, B. B.; Tan, X. L.; Xu, H. R.; Xuan, X. F.; Guo, Z.; Jin, F.; Wu, W. B. High-TC ferromagnetic order in CaRuO3/ La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 2013, 103, 262402.

27

Chen, B. B.; Chen, P. F.; Xu, H. R.; Jin, F.; Guo, Z.; Lan, D.; Wan, S. Y.; Gao, G. Y.; Chen, F.; Wu, W. B. Interfacial control of ferromagnetism in ultrathin La0.67Ca0.33MnO3 sandwiched between CaRu1-xTixO3 (x = 0-0.8) epilayers. ACS Appl. Mater. Interfaces 2016, 8, 34924-34932.

28

Gong, G. Q.; Gupta, A.; Xiao, G.; Lecoeur, P.; McGuire, T. R. Perovskite oxide superlattices: Magnetotransport and magnetic properties. Phys. Rev. B Condens. Matter 1996, 54, R3742-R3745.

29

Ziese, M.; Bern, F.; Pippel, E.; Hesse, D.; Vrejoiu, I. Stabilization of ferromagnetic order in La0.7Sr0.3MnO3-SrRuO3 superlattices. Nano Lett. 2012, 12, 4276-4281.

30

Ziese, M.; Vrejoiu, I.; Pippel, E.; Esquinazi, P.; Hesse, D.; Etz, C.; Henk, J.; Ernst, A.; Maznichenko, I. V.; Hergert, W. et al. Tailoring magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices. Phys. Rev. Lett. 2010, 104, 167203.

31

Kumar, V. S.; Zhou, S. L.; Liu, R. R.; Zhu, Y. M.; Liu, H. J.; Chin, Y. Y.; Lin, H. J.; Chen, C. T.; Zhan, Q.; Chu, Y. H. Antiferromagnetic interfacial coupling and giant magnetic hysteresis in La0.5Ca0.5MnO3- SrRuO3 superlattices. ACS Omega 2018, 3, 14266-14273.

32

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

33
Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. Wien2K: An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Schwarz, Austria. 2001.
34

Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 1937, 52, 191-197.

35

Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419-1475.

36

Si, L.; Xiao, W.; Kaufmann, J.; Tomczak, J. M.; Lu, Y.; Zhong, Z. C.; Held, K. Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO2. Phys. Rev. Lett. 2020, 124, 166402.

37

Si, L.; Janson, O.; Li, G.; Zhong, Z. C.; Liao, Z. L.; Koster, G.; Held, K. Quantum anomalous Hall state in ferromagnetic SrRuO3 (111) bilayers. Phys. Rev. Lett. 2017, 119, 026402.

38

Gull, E.; Millis, A. J.; Lichtenstein, A. I.; Rubtsov, A. N.; Troyer, M.; Werner, P. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 2011, 83, 349-404.

39

Parragh, N.; Toschi, A.; Held, K.; Sangiovanni, G. Conserved quantities of SU(2)-invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations. Phys. Rev. B 2012, 86, 155158.

40

Wallerberger, M.; Hausoel, A.; Gunacker, P.; Kowalski, A.; Parragh, N.; Goth, F.; Held, K.; Sangiovanni, G. w2dynamics: Local one- and two-particle quantities from dynamical mean field theory. Comput. Phys. Commun. 2019, 235, 388-399.

41

Huang, Z.; Wang, L. F.; Chen, P. F.; Gao, G. Y.; Tan, X. L.; Zhi, B. W.; Xuan, X. F.; Wu, W. B. Tuning the ground state of La0.67Ca0.33MnO3 films via coherent growth on orthorhombic NdGaO3 substrates with different orientations. Phys. Rev. B 2012, 86, 014410.

42

Koster, G.; Klein, L.; Siemons, W.; Rijnders, G.; Dodge, J. S.; Eom, C. B.; Blank, D. H. A.; Beasley, M. R. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 2012, 84, 253-298.

43

Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 1997, 9, 8171-8199.

44

de Andrés, A.; Rubio, J.; Castro, G.; Taboada, S.; Martínez, J. L.; Colino, J. M. Structural and magnetic properties of ultrathin epitaxial La0.7Ca0.3MnO3 manganite films: Strain versus finite size effects. Appl. Phys. Lett. 2003, 83, 713-715.

45

Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S. J.; Klose, F.; Jungbauer, M. et al. High-TC interfacial ferromagnetism in SrMnO3/LaMnO3 superlattices. Adv. Funct. Mater. 2020, 30, 1808270.

46

Rondinelli, J. M.; May, S. J.; Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 2012, 37, 261-270.

47

Nair, H. P.; Liu, Y.; Ruf, J. P.; Schreiber, N. J.; Shang, S. L.; Baek, D. J.; Goodge, B. H.; Kourkoutis, L. F.; Liu, Z. K.; Shen, K. M. et al. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios. APL Mater. 2018, 6, 046101.

48

Gerra, G.; Tagantsev, A. K.; Setter, N.; Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett. 2006, 96, 107603.

49

Guo, H. W.; Wang, Z.; Dong, S.; Ghosh, S.; Saghayezhian, M.; Chen, L. N.; Weng, Y. K.; Herklotz, A.; Ward, T. Z.; Jin, R. Y. et al. Interface-induced multiferroism by design in complex oxide superlattices. Proc. Natl. Acad. Sci. USA 2017, 114, E5062-E5069.

50

Chen, B. B.; Xu, H. R.; Ma, C.; Mattauch, S.; Lan, D.; Jin, F.; Guo, Z.; Wan, S. Y.; Chen, P. F.; Gao, G. Y. et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science 2017, 357, 191-194.

51

Lan, D.; Chen, B. B.; Qu, L. L.; Zhang, K. X.; Xu, L. Q.; Jin, F.; Guo, Z.; Chen, F.; Gao, G. Y.; Wu, W. B. Tuning antiferromagnetic interlayer exchange coupling in La0.67Ca0.33MnO3-based synthetic antiferromagnets. APL Mater. 2019, 7, 031119.

52

Ahn, C. H.; Bhattacharya, A.; Di Ventra, M.; Eckstein, J. N.; Frisbie, C. D.; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, A. J. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 2006, 78, 1185-1212.

53

Mannella, N.; Booth, C. H.; Rosenhahn, A.; Sell, B. C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S. H.; Watanabe, M.; Ibrahim, K. et al. Temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3. Phys. Rev. B 2008, 77, 125134.

54

Jeong, H.; Jeong, S. G.; Mohamed, A. Y.; Lee, M.; Noh, W. S.; Kim, Y.; Bae, J. S.; Choi, W. S.; Cho, D. Y. Thickness-dependent orbital hybridization in ultrathin SrRuO3 epitaxial films. Appl. Phys. Lett. 2019, 115, 092906.

55

Reitz, C.; Leufke, P. M.; Schneider, R.; Hahn, H.; Brezesinski, T. Large magnetoresistance and electrostatic control of magnetism in ordered mesoporous La1-xCaxMnO3 thin films. Chem. Mater. 2014, 26, 5745-5751.

56

Valencia, S.; Konstantinovic, Z.; Schmitz, D.; Gaupp, A.; Balcells, L.; Martínez, B. Interfacial effects in manganite thin films with different capping layers of interest for spintronic applications. Phys. Rev. B 2011, 84, 024413.

57

Beyreuther, E.; Grafström, S.; Eng, L. M.; Thiele, C.; Dörr, K. XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys. Rev. B 2006, 73, 155425.

58

Zheng, L. M.; Wang, X. R.; Lü, W. M.; Li, C. J.; Paudel, T. R.; Liu, Z. Q.; Huang, Z.; Zeng, S. W.; Han, K.; Chen, Z. H. et al. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat. Commun. 2018, 9, 1897.

59

Tomioka, Y.; Asamitsu, A.; Tokura, Y. Magnetotransport properties and magnetostructural phenomenon in single crystals of La0.7(Ca1-ySry)0.3MnO3. Phys. Rev. B 2000, 63, 024421.

60

Bhattacharya, A.; Zhai, X.; Warusawithana, M.; Eckstein, J. N.; Bader, S. D. Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3)m/(SrMnO3)2m. Appl. Phys. Lett. 2007, 90, 222503.

61

May, S. J.; Ryan, P. J.; Robertson, J. L.; Kim, J. W.; Santos, T. S.; Karapetrova, E.; Zarestky, J. L.; Zhai, X.; te Velthuis, S. G. E.; Eckstein, J. N. et al. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nat. Mater. 2009, 8, 892-897.

62

Zhu, Y. Y.; Ye, B. Y.; Li, Q.; Liu, H.; Miao, T.; Wu, L. J.; Li, L.; Lin, L. F.; Zhu, Y.; Zhang, Z. et al. Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period. Phys. Rev. B 2020, 102, 235107.

63

Paul, A.; Birol, T. Applications of DFT + DMFT in materials science. Annu. Rev. Mater. Sci. 2019, 49, 31-52.

64

Yajima, T.; Minohara, M.; Bell, C.; Kumigashira, H.; Oshima, M.; Hwang, H. Y.; Hikita, Y. Enhanced electrical transparency by ultrathin LaAlO3 insertion at oxide metal/semiconductor heterointerfaces. Nano Lett. 2015, 15, 1622-1626.

65

Yajima, T.; Hikita, Y.; Minohara, M.; Bell, C.; Mundy, J. A.; Kourkoutis, L. F.; Muller, D. A.; Kumigashira, H.; Oshima, M.; Hwang, H. Y. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 2015, 6, 6759.

66

Huang, Z.; Ariando; Wang, X. R.; Rusydi, A.; Chen, J. S.; Yang, H.; Venkatesan, T. Interface engineering and emergent phenomena in oxide heterostructures. Adv. Mater. 2018, 30, 1802439.

67

Guo, H. W.; Saghayezhian, M.; Wang, Z.; Zhu, Y. M.; Zhang, J. D.; Plummer, W. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy. Front. Phys. 2019, 15, 13401.

68

Omar, G. J.; Li, M. S.; Chi, X.; Huang, Z.; Lim, Z. S.; Prakash, S.; Zeng, S. W.; Li, C. J.; Yu, X. J.; Tang, C. H. et al. Characteristic lengths of interlayer charge transfer in correlated oxide heterostructures. Nano Lett. 2020, 20, 2493-2499.

69

Kim, J. R.; Jang, J.; Go, K. J.; Park, S. Y.; Roh, C. J.; Bonini, J.; Kim, J.; Lee, H. G.; Rabe, K. M.; Lee, J. S. et al. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nat. Commun. 2020, 11, 4944.

70

Rondinelli, J. M.; Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 2012, 24, 1961-1968.

71

Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006, 69, 797-851.

72

Das, S.; Herklotz, A.; Pippel, E.; Guo, E. J.; Rata, D.; Dörr, K. Strain dependence of antiferromagnetic interface coupling in La0.7Sr0.3MnO3/ SrRuO3 superlattices. Phys. Rev. B 2015, 91, 134405.

73

Das, S.; Rata, A. D.; Maznichenko, I. V.; Agrestini, S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S. M.; Babu Vasili, H. et al. Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3 interfaces. Phys. Rev. B 2019, 99, 024416.

File
12274_2021_3644_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2021
Revised: 23 May 2021
Accepted: 02 June 2021
Published: 28 June 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work has supported by the National Basic Research Program of China (Nos. 2016YFA0401003, 2017YFA0403502, and 2020YFA0309100), the National Natural Science Foundation of China (Nos. 11974326, 12074365, 11804342, U2032218, and 51872278), the Fundamental Research Funds for the Central Universities (Nos. WK2030000035 and WK2340000102), and Hefei Science Center CAS. L. S. and K. H. were supported by the Austrian Science Fund (FWF) through Projects Nos. P30997 and P32044. Calculations have been done on the Vienna Scientific Clusters (VSC).

Return