Journal Home > Volume 14 , Issue 10

Uncontrollable dendrite growth resulting from the non-uniform lithium ion (Li+) flux and volume expansion in lithium metal (Li) negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries. Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li+ flux, the effective interaction distance between lithium ions and N-containing groups should be relatively small (down to nanometer scale) according to the Debye length law. Thus, it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li+ flux. In this work, porous carbon nitride microspheres (PCNMs) with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano- and micrometer scales on the Cu/Li foil. Physically, the three-dimensional (3D) porous framework is favorable for absorbing volume changes and guiding Li growth. Chemically, this coating layer can render a suitable interaction distance to effectively homogenize the Li+ flux and contribute to establishing a robust and stable solid electrolyte interphase (SEI) layer with Li-F, Li-N, and Li-O-rich contents based on the Debye length law. Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating, resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li‖Cu and the Li‖Li symmetric cells. Meanwhile, a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of ~ 80% after more than 200 cycles at 1 C and achieved a remarkable rate capability. The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained ~ 73% of the initial capacity after 150 cycles at 0.2 C.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating

Show Author's information Qiang Guo1,2Wei Deng1Shengjie Xia1Zibo Zhang1Fei Zhao1Binjie Hu2Sasa Zhang1Xufeng Zhou1( )George Zheng Chen3( )Zhaoping Liu1( )
Key Laboratory of Graphene Technologies and Applications of Zhejiang Province and Advanced Li-ion Battery Engineering Laboratory of Zhejiang Province,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS),Ningbo,315201,China;
Department of Chemical and Environmental Engineering,Faculty of Science and Engineering, University of Nottingham,Ningbo,315100,China;
Department of Chemical and Environmental Engineering, Faculty of Engineering,University of Nottingham,Nottingham, NG7, 2RD, UK,

Abstract

Uncontrollable dendrite growth resulting from the non-uniform lithium ion (Li+) flux and volume expansion in lithium metal (Li) negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries. Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li+ flux, the effective interaction distance between lithium ions and N-containing groups should be relatively small (down to nanometer scale) according to the Debye length law. Thus, it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li+ flux. In this work, porous carbon nitride microspheres (PCNMs) with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano- and micrometer scales on the Cu/Li foil. Physically, the three-dimensional (3D) porous framework is favorable for absorbing volume changes and guiding Li growth. Chemically, this coating layer can render a suitable interaction distance to effectively homogenize the Li+ flux and contribute to establishing a robust and stable solid electrolyte interphase (SEI) layer with Li-F, Li-N, and Li-O-rich contents based on the Debye length law. Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating, resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li‖Cu and the Li‖Li symmetric cells. Meanwhile, a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of ~ 80% after more than 200 cycles at 1 C and achieved a remarkable rate capability. The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained ~ 73% of the initial capacity after 150 cycles at 0.2 C.

Keywords: carbon nitride, porous structure, Debye length, lithiophilic coating, Li negative electrode

References(60)

1

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

2

Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431-4437.

3

Lu, Z. Y.; Liang, Q. H.; Wang, B.; Tao, Y.; Zhao, Y. F.; Lv, W.; Liu, D. H.; Zhang, C.; Weng, Z.; Liang, J. C. et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 2019, 9, 1803186.

4

Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride- enriched interphase. Adv. Mater. 2020, 32, 1906427.

5

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040-3071.

6

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.

7

Cheng, M. R.; Su, H.; Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Molten lithium-filled three-dimensional hollow carbon tube mats for stable lithium metal anodes. ACS Appl. Energy Mater. 2019, 2, 8303-8309.

8

Lang, J. L.; Song, J. A.; Qi, L. H.; Luo, Y. Z.; Luo, X. Y.; Wu, H. Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode. ACS Appl. Mater. Interfaces 2017, 9, 10360-10365.

9

Deng, W.; Liang, S. S.; Zhou, X. F.; Zhao, F.; Zhu, W. H.; Liu, Z. P. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. J. Mater. Chem. A 2019, 7, 6267-6274.

10

He, Y.; Xu, H. W.; Shi, J. L.; Liu, P. Y.; Tian, Z. Q.; Dong, N.; Luo, K.; Zhou, X. F.; Liu, Z. P. Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Mater. 2019, 23, 418-426.

11

Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

12

Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256-4265.

13

Wu, Q. P.; Yao, Z. G.; Du, A. C.; Wu, H.; Huang, M. S.; Xu, J.; Cao, F. H.; Li, C. L. Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium- metal batteries. J. Mater. Chem. A 2021, 9, 5606-5618.

14

Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite- free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 2019, 12, 2224-2229.

15

Sun, H.; Zhu, G. Z.; Zhu, Y. M.; Lin, M. C.; Chen, H.; Li, Y. Y.; Hung, W. H.; Zhou, B.; Wang, X.; Bai, Y. X. et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 2020, 32, 2001741.

16

Shi, P. C.; Liu, F. F.; Feng, Y. Z.; Zhou, J. F.; Rui, X. H.; Yu, Y. The synergetic effect of lithium bisoxalatodifluorophosphate and fluoroethylene carbonate on dendrite suppression for fast charging lithium metal batteries. Small 2020, 16, 2001989.

17

Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

18

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

19

Yao, Y.; Xu, R.; Chen, M. L.; Cheng, X. L.; Zeng, S. F.; Li, D. J.; Zhou, X. F.; Wu, X. J.; Yu, Y. Encapsulation of SeS2 into nitrogen- doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery. ACS Nano 2019, 13, 4695-4704.

20

Yang, G. J.; Li, Y. J.; Tong, Y. X.; Qiu, J. L.; Liu, S.; Zhang, S. M.; Guan, Z. R.; Xu, B.; Wang, Z. X.; Chen, L. Q. Lithium plating and stripping on carbon nanotube sponge. Nano Lett. 2019, 19, 494-499.

21

Fan, L.; Zhuang, H. L.; Zhang, W. D.; Fu, Y.; Liao, Z. H.; Lu, Y. Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 2018, 8, 1703360.

22

Luan, X. Y.; Wang, C. G.; Wang, C. S.; Gu, X.; Yang, J.; Qian, Y. T. Stable lithium deposition enabled by an acid-treated g-C3N4 interface layer for a lithium metal anode. ACS Appl. Mater. Interfaces 2020, 12, 11265-11272.

23

Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2019, 12, 525-529.

24

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356-1365.

25

Li, G. X.; Liu, Z.; Huang, Q. Q.; Gao, Y.; Regula, M.; Wang, D. W.; Chen, L. Q.; Wang, D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076-1083.

26

Ni, S. Y.; Tan, S. S.; An, Q. Y.; Mai, L. Q. Three dimensional porous frameworks for lithium dendrite suppression. J. Energy Chem. 2020, 44, 73-89.

27

Wu, H. L.; Zhang, Y. B.; Deng, Y. Q.; Huang, Z. J.; Zhang, C.; He, Y. B.; Lv, W.; Yang, Q. H. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Sci. China Mater. 2019, 62, 87-94.

28

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764-7768.

29

Guo, Y. P.; Niu, P.; Liu, Y. Y.; Ouyang, Y.; Li, D.; Zhai, T. Y.; Li, H. Q.; Cui, Y. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 2019, 31, 1900342.

30

Huang, Y.; Chen, B.; Duan, J.; Yang, F.; Wang, T. R.; Wang, Z. F.; Yang, W. J.; Hu, C. C.; Luo, W.; Huang, Y. H. Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries. Angew. Chem., Int. Ed. 2020, 59, 3699-3704.

31

Yang, Q. F.; Cui, M. N.; Hu, J. L.; Chu, F. L.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 2020, 14, 1866-1878.

32

Xu, Y.; Li, T.; Wang, L. P.; Kang, Y. J. Interlayered dendrite-free lithium plating for high-performance lithium-metal batteries. Adv. Mater. 2019, 31, 1901662.

33

Guo, Y. P.; Wei, Y. Q.; Li, H. Q.; Zhai, T. Y. Layer structured materials for advanced energy storage and conversion. Small 2017, 13, 1701649.

34

Pennathur, S.; Santiago, J. G. Electrokinetic transport in nanochannels. 2. Experiments. Anal. Chem. 2005, 77, 6782-6789.

35

Hu, J. L.; Tian, J.; Li, C. L. Nanostructured carbon nitride polymer- reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 11615-11625.

36

Hu, J. L.; Chen, K. Y.; Yao, Z. G.; Li, C. L. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull. 2021, 66, 694-707.

37

Liu, G. Q.; Xue, M. W.; Liu, Q. P.; Yang, H.; Zhou, Y. M. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting. Int. J. Hyd. Energy 2019, 44, 25671-25679.

38

Kuang, P. Y.; Su, Y. Z.; Chen, G. F.; Luo, Z.; Xing, S. Y.; Li, N.; Liu, Z. Q. g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance. Appl. Surf. Sci. 2015, 358, 296-303.

39

Liu, Y. J.; Liu, H. X.; Zhou, H. M.; Li, T. D.; Zhang, L. N. A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation. Appl. Surf. Sci. 2019, 466, 133-140.

40

Guo, Q.; Wan, Y. L.; Hu, B. B.; Wang, X. T. Carbon-nitride-based core-shell nanomaterials: Synthesis and applications. J. Mater. Sci. Mater. Electron. 2018, 29, 20280-20301.

41

Uma, R.; Ravichandran, K.; Sriram, S.; Sakthivel, B. Cost-effective fabrication of ZnO/g-C3N4 composite thin films for enhanced photocatalytic activity against three different dyes (MB, MG and RhB). Mater. Chem. Phys. 2017, 201, 147-155.

42

Li, L.; Sun, S. Q.; Wang, Y. X.; Wang, C. Y. Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance. J. Photochem. Photobiol. A Chem. 2018, 355, 16-24.

43

Chu, M. N.; Hu, K.; Wang, J. S.; Liu, Y. D.; Ali, S.; Qin, C. L.; Jing, L. Q. Synthesis of g-C3N4-based photocatalysts with recyclable feature for efficient 2, 4-dichlorophenol degradation and mechanisms. Appl. Catal. B Environ. 2019, 243, 57-65.

44

Li, C.; Zhao, W.; Wang, A. J.; Zhu, W. H.; Shang, D. H. Multifunctional carbon nitride nano-homojunction decorated g-C3N4 nanocomposites for optoelectronic performances. Appl. Surf. Sci. 2019, 467-468, 1140-1147.

45

Guo, Q.; Fu, L. M.; Yan, T.; Tian, W.; Ma, D. F.; Li, J. M.; Jiang, Y. N.; Wang, X. T. Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-C3N4 for CO2 reduction with H2O vapor. Appl. Surf. Sci. 2020, 509, 144773.

46

Qi, K. Z.; Xie, Y. B.; Wang, R. D.; Liu, S. Y.; Zhao, Z. Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation. Appl. Surf. Sci. 2019, 466, 847-853.

47

Liu, N.; Lu, N.; Su, Y.; Wang, P.; Quan, X. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Sep. Purif. Technol. 2019, 211, 782-789.

48

Yu, W. L.; Xu, D. F.; Peng, T. Y. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J. Mater. Chem. A 2015, 3, 19936-19947.

49

Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2012, 2, 645-650.

50

Meng, Q. Q.; Deng, B.; Zhang, H. M.; Wang, B. Y.; Zhang, W. F.; Wen, Y. H.; Ming, H.; Zhu, X. Y.; Guan, Y. P.; Xiang, Y. et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater. 2019, 16, 419-425.

51

Alpen, U. V. Li3N: A promising Li ionic conductor. J. Solid State Chem. 1979, 29, 379-392.

52

Ye, S. F.; Wang, L. F.; Liu, F. F.; Shi, P. C.; Wang, H. Y.; Wu, X. J.; Yu, Y. g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 2020, 10, 2002647.

53

Liu, S. F.; Ji, X.; Piao, N.; Chen, J.; Eidson, N.; Xu, J. J.; Wang, P. F.; Chen, L.; Zhang, J. X.; Deng, T. et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem., Int. Ed. 2021, 60, 3661.

54

Pu, J.; Li, J. C.; Zhang, K.; Zhang, T.; Li, C. W.; Ma, H. X.; Zhu, J.; Braun, P. V.; Lu, J.; Zhang, H. G. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 2019, 10, 1896.

55

Dong, N.; Yang, G. H.; Luo, H.; Xu, H. W.; Xia, Y. G.; Liu, Z. P. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. J. Power Sources 2018, 400, 449-456.

56

Jeon, Y.; Kang, S. J.; Joo, S. H.; Cho, M.; Park, S. O.; Liu, N.; Kwak, S. K.; Lee, H. W.; Song, H. K. Pyridinic-to-graphitic conformational change of nitrogen in graphitic carbon nitride by lithium coordination during lithium plating. Energy Storage Mater. 2020, 31, 505-514.

57

Whiteley, J. M.; Hafner, S.; Han, S. S.; Kim, S. C.; Oh, K. H.; Lee, S. H. FeS2-imbedded mixed conducting matrix as a solid battery cathode. Adv. Energy Mater. 2016, 6, 1600495.

58

Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Wang, H. B.; Wang, X. P.; Rao, G. F.; Wang, X. F.; Chen, B.; Xiong, J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 2020, 68, 104373.

59

Cheng, Q.; Wei, L.; Liu, Z.; Ni, N.; Sang, Z.; Zhu, B.; Xu, W. H.; Chen, M. J.; Miao, Y. P.; Chen, L. Q. et al. Operando and three- dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun. 2018, 9, 2942.

60

Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355-7367.

File
12274_2021_3643_MOESM1_ESM.pdf (9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 March 2021
Revised: 24 May 2021
Accepted: 02 June 2021
Published: 09 July 2021
Issue date: October 2021

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (No. 2016YFF0204302), the National Natural Science Foundation of China (Nos. 51872305 and 52001320), and S & T Innovation 2025 Major Special Programme of Ningbo (No. 2018B10081). The authors also thank Doctoral Training Partnership Programme provided by University of Nottingham Ningbo, China and Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return