Journal Home > Volume 16 , Issue 4

Surface characterization of metal nanoparticles is a critical need in nanocatalysis for in-depth understanding of the structure–function relationships. The surface structure of nanoparticles is often different from the subsurface, and it is challenging to separately characterize the surface and the subsurface. In this work, theoretical calculations and extended X-ray absorption fine structure (EXAFS) analysis illustrate that the surface atoms of noble metals (Pt and Pd) are oxidized in the air, while the subsurface atoms are not easily oxidized. Taking advantage of the oxidation properties, we suggest a stepwise reduction–oxidation approach to determine the surface atomic arrangement of noble metal nanoparticles, and confirm the rationality of this approach by identifying the surface structure of typical 2–3 nm Pt and Pd nanoparticles. The reduction–oxidation approach is applied to characterize the surface structure of model Pd-Sb bimetallic catalyst, which illustrates that the surface Pd is well isolated by Sb atoms with short bond distance at 2.70 Å, while there are still Pd–Pd bonds in the subsurface. Density functional theory (DFT) calculations and Pd L edge X-ray absorption near edge structure (XANES) indicate that the isolation of surface Pd significantly decreases the adsorption energies of Pd-hydrocarbon, which leads to the high propylene selectivity and turnover frequency Pd-Sb bimetallic catalyst for propane dehydrogenation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach

Show Author's information Chenliang Ye1,2,§Mao Peng3,§Tingting Cui1Xinxin Tang4Dingsheng Wang1Miaolun Jiao3( )Jeffrey T. Miller2( )Yadong Li1( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Institute of Microbial Chemistry, (BIKAKEN), Tokyo 141-0021, Japan

§ Chenliang Ye and Mao Peng contributed equally to this work.

Abstract

Surface characterization of metal nanoparticles is a critical need in nanocatalysis for in-depth understanding of the structure–function relationships. The surface structure of nanoparticles is often different from the subsurface, and it is challenging to separately characterize the surface and the subsurface. In this work, theoretical calculations and extended X-ray absorption fine structure (EXAFS) analysis illustrate that the surface atoms of noble metals (Pt and Pd) are oxidized in the air, while the subsurface atoms are not easily oxidized. Taking advantage of the oxidation properties, we suggest a stepwise reduction–oxidation approach to determine the surface atomic arrangement of noble metal nanoparticles, and confirm the rationality of this approach by identifying the surface structure of typical 2–3 nm Pt and Pd nanoparticles. The reduction–oxidation approach is applied to characterize the surface structure of model Pd-Sb bimetallic catalyst, which illustrates that the surface Pd is well isolated by Sb atoms with short bond distance at 2.70 Å, while there are still Pd–Pd bonds in the subsurface. Density functional theory (DFT) calculations and Pd L edge X-ray absorption near edge structure (XANES) indicate that the isolation of surface Pd significantly decreases the adsorption energies of Pd-hydrocarbon, which leads to the high propylene selectivity and turnover frequency Pd-Sb bimetallic catalyst for propane dehydrogenation.

Keywords: surface characterization, stepwise reduction–oxidation approach, propane dehydrogenation, Pd-Sb bimetallic catalyst

References(45)

[1]

Purdy, S. C.; Seemakurthi, R. R.; Mitchell, G. M.; Davidson, M.; Lauderback, B. A.; Deshpande, S.; Wu, Z. W.; Wegener, E. C.; Greeley, J.; Miller, J. T. Structural trends in the dehydrogenation selectivity of palladium alloys. Chem. Sci. 2020, 11, 5066–5081.

[2]

Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Appl. Catal. B-Environ. 2021, 283, 119628.

[3]

Ge, B. Q.; Hu, Y. D.; Zhang, H. W.; Xu, J. K.; Zhang, P.; Yue, Y. Y; Zhu, H. B.; Lin, S.; Yuan, P. Zirconium promoter effect on catalytic activity of PD based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber. Appl. Surf. Sci. 2021, 539, 148212.

[4]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[5]

Xie, Z. H.; Tian, D.; Xie, M.; Yang, S. Z.; Xu, Y. G.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K. Z.; Wang, H. et al. Interfacial active sites for CO2 assisted selective cleavage of C-C/C-H bonds in ethane. Chem 2020, 6, 2703–2716.

[6]

Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017, 3, 477–493.

[7]

Arellano-Trevino, M. A.; Kanani, N.; Jeong-Potter, C. W.; Farrauto, R. J. Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions. Chem. Eng. J. 2019, 375, 121953.

[8]

Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

[9]

Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.

[10]

Jalid, F.; Khan, T. S.; Haider, M. A. CO2 reduction and ethane dehydrogenation on transition metal catalysts: Mechanistic insights, reactivity trends and rational design of bimetallic alloys. Catal. Sci. Technol. 2021, 11, 97–115.

[11]

Wang, J.; Lv, C. Q.; Liu, J. H.; Ren, R. R.; Wang, G. C. Theoretical investigation of solvent effects on the selective hydrogenation of furfural over Pt(111). Int. J. Hydrogen. Energy 2021, 46, 1592–1604.

[12]

Sarıbıyık, O. Y.; Weilach, C.; Serin, S.; Rupprechter, G. The effect of shape-controlled Pt and PD nanoparticles on selective catalytic hydrodechlorination of trichloroethylene. Catalysts 2020, 10, 1314.

[13]

Ma, H. Y.; Wang, G. C. Selective hydrogenation of acetylene on Ptn/TiO2 (n = 1,2,4,8) surfaces: Structure sensitivity analysis. ACS Catal. 2020, 10, 4922–4928.

[14]

Elias, W. C.; Heck, K. N.; Guo, S. J.; Yazdi, S.; Ayala-Orozco, C.; Grossweiler, S.; Domingos, J. B.; Ringe, E.; Wong, M. S. Indium-decorated PD nanocubes degrade nitrate anions rapidly. Appl. Catal. B-Environ. 2020, 276, 119048.

[15]

Guo, S. J.; Powell, C. D.; Villagrán, D.; Wong, M. S. Magnetic In-PD catalysts for nitrate degradation. Environ. Sci. Nano 2020, 7, 2681–2690.

[16]

Wu, Z. W.; Wegener, E. C.; Tseng, H. T.; Gallagher, J. R.; Harris, J. W.; Diaz, R. E.; Ren, Y.; Ribeiro, F. H.; Miller, J. T. Pd-In intermetallic alloy nanoparticles: Highly selective ethane dehydrogenation catalysts. Catal. Sci. Technol. 2016, 6, 6965–6976.

[17]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[18]

Yu, Z. N.; Sawada, J. A.; An, W. Z.; Kuznicki, S. M. PtZn-ETS-2: A novel catalyst for ethane dehydrogenation. Aiche J. 2015, 61, 4367–4376.

[19]

Homs, N.; Llorca, J.; Riera, M.; Jolis, J.; Fierro, J. L. G.; Sales, J.; De La Piscina, P. R. Silica-supported PtSn alloy doped with Ga, In or, Tl: Characterization and catalytic behaviour in n-hexane dehydrogenation. J. Mol. Catal. A-Chem. 2003, 200, 251–259.

[20]

Jablonski, E. L.; Castro, A. A.; Scelza, O. A.; De Miguel, S. R. Effect of Ga addition to Pt/Al2O3 on the activity, selectivity and deactivation in the propane dehydrogenation. Appl. Catal. A-Gen. 1999, 183, 189–198.

[21]

Yu, C. L.; Ge, Q. J.; Xu, H. Y.; Li, W. Z. Propane dehydrogenation to propylene over Pt-based catalysts. Catal. Lett. 2006, 112, 197–201.

[22]

Ye, C. L.; Guo, C. L.; Zhang, J. L. Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol. Fuel Process. Technol. 2016, 143, 219–224.

[23]

Guo, C. L.; Wu, Y. Y.; Qin, H. Y.; Zhang, J. L. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study. Fuel Process. Technol. 2014, 124, 61–69.

[24]

Srabionyan, V. V.; Bugaev, A. L.; Pryadchenko, V. V.; Avakyan, L. A.; Van Bokhoven, J. A.; Bugaev, L. A. EXAFS study of size dependence of atomic structure in palladium nanoparticles. J. Phys. Chem. Solids 2014, 75, 470–476.

[25]

Poineau, F.; Weck, P. F.; Burton-Pye, B. P.; Denden, I.; Kim, E.; Kerlin, W.; German, K. E.; Fattahi, M.; Francesconi, L. C.; Sattelberger, A. P. et al. Reactivity of HTcO4 with methanol in sulfuric acid: Tc-sulfate complexes revealed by XAFS spectroscopy and first principles calculations. Dalton Trans. 2013, 42, 4348–4352.

[26]

Smolentsev, G.; Guda, A. A.; Janousch, M.; Frieh, C.; Jud, G.; Zamponi, F.; Chavarot-Kerlidou, M.; Artero, V.; Van Bokhoven, J. A.; Nachtegaal, M. X-ray absorption spectroscopy with time-tagged photon counting: application to study the structure of a Co(I) intermediate of H2 evolving photo-catalyst. Faraday Discuss. 2014, 171, 259–273.

[27]

Tromp, M.; Sietsma, J. R. A.; Van Bokhoven, J. A.; Van Strijdonck, G. P. F.; Van Haaren, R. J.; Van Der Eerden, A. M. J.; Van Leeuwen, P. W. N. M.; Koningsberger, D. C. Deactivation processes of homogeneous Pd catalysts using in situ time resolved spectroscopic techniques. Chem. Commun. 2003, 128–129.

[28]

He, P.; Chen, Y. L.; Jarvis, J.; Meng, S. J.; Liu, L. J.; Wen, X. D.; Song, H. Highly selective aromatization of octane over Pt-Zn/UZSM-5: The effect of Pt-Zn interaction and Pt position. ACS Appl. Mater. Interfaces 2020, 12, 28273–28287.

[29]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[30]
Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, in press, DOI: 10.1007/s12274-021-3287-1.
[31]

Tromp, M.; Van Bokhoven, J. A.; Van Haaren, R. J.; Van Strijdonck, G. P. F.; Van Der Eerden, A. M. J.; Van Leeuwen, P. W. N. M.; Koningsberger, D. C. Structure-performance relations in homogeneous Pd catalysis by in situ EXAFS spectroscopy. J. Am. Chem. Soc. 2002, 124, 14814–14815.

[32]

Cai, W. T.; Mu, R. T.; Zha, S. J.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Li, H.; Tian, H.; Tang, Y.; Tao, F. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 2018, 4, eaar5418.

[33]

Gallagher, J. R.; Li, T.; Zhao, H. Y.; Liu, J. J.; Lei, Y.; Zhang, X. Y.; Ren, Y.; Elam, J. W.; Meyer, R. J.; Winans, R. E. et al. In situ diffraction of highly dispersed supported platinum nanoparticles. Catal. Sci. Technol. 2014, 4, 3053–3063.

[34]

Ye, C. L.; Peng, M.; Wang, Y. H.; Zhang, N. Q.; Wang, D. S.; Jiao, M. L.; Miller, J. T. Surface hexagonal Pt1Sn1 intermetallic on Pt nanoparticles for selective propane dehydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 25903–25909.

[35]

Wu, Z. W.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N. et al. Changes in catalytic and adsorptive properties of 2 nm Pt3Mn nanoparticles by subsurface atoms. J. Am. Chem. Soc. 2018, 140, 14870–14877.

[36]

Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G. H.; Miller, J. T. Identification of a Pt3Co surface intermetallic alloy in Pt-Co propane dehydrogenation catalysts. ACS Catal. 2019, 9, 5231–5244.

[37]

LiBretto, N. J.; Yang, C.; Ren, Y.; Zhang, G. H.; Miller, J. T. Identification of surface structures in Pt3Cr intermetallic nanocatalysts. Chem. Mater. 2019, 31, 1597–1609.

[38]

Purdy, S. C.; Ghanekar, P.; Mitchell, G.; Kropf, A. J.; Zemlyanov, D. Y.; Ren, Y.; Ribeiro, F.; Delgass, W. N.; Greeley, J.; Miller, J. T. Origin of electronic modification of platinum in a Pt3V alloy and its consequences for propane dehydrogenation catalysis. ACS Appl. Energ. Mater. 2020, 3, 1410–1422.

[39]

Yang, C.; Wu, Z. W.; Zhang, G. H.; Sheng, H. P.; Tian, J.; Duan, Z. L.; Sohn, H.; Kropf, A. J.; Wu, T. P.; Krause, T. R. et al. Promotion of Pd nanoparticles by Fe and formation of a Pd3Fe intermetallic alloy for propane dehydrogenation. Catal. Today 2019, 323, 123–128.

[40]

Zhang, G. H.; Ye, C. L.; Liu, W.; Zhang, X. B.; Su, D. S.; Yang, X.; Chen, J. Z.; Wu, Z. W.; Miller, J. T. Diffusion-limited formation of nonequilibrium intermetallic nanophase for selective dehydrogenation. Nano Lett. 2019, 19, 4380–4383.

[41]

Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735–2740.

[42]

Wegener, E. C.; Wu, Z. W.; Tseng, H. T.; Gallagher, J. R.; Ren, Y.; Diaz, R. E.; Ribeiro, F. H.; Miller, J. T. Structure and reactivity of Pt-In intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation. Catal. Today 2018, 299, 146–153.

[43]

Yang, M. L.; Zhu, Y. A.; Fan, C.; Sui, Z. J.; Chen, D.; Zhou, X. G. DFT study of propane dehydrogenation on Pt catalyst: Effects of step sites. Phys. Chem. Chem. Phys. 2011, 13, 3257–3267.

[44]

Cybulskis, V. J.; Bukowski, B. C.; Tseng, H. T.; Gallagher, J. R.; Wu, Z. W.; Wegener, E.; Kropf, A. J.; Ravel, B.; Ribeiro, F. H.; Greeley, J. et al. Zinc promotion of platinum for catalytic light alkane dehydrogenation: Insights into geometric and electronic effects. ACS Catal. 2017, 7, 4173–4181.

[45]

Van Spronsen, M. A.; Daunmu, K.; O'Connor, C. R.; Egle, T.; Kersell, H.; Oliver-Meseguer, J.; Salmeron, M. B.; Madix, R. J.; Sautet, P.; Friend, C. M. Dynamics of surface alloys: Rearrangement of Pd/Ag(111) induced by CO and O2. J. Phys. Chem. C 2019, 123, 8312–8323.

File
12274_2021_3636_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 April 2021
Revised: 23 May 2021
Accepted: 30 May 2021
Published: 02 July 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22008135), China Postdoctoral Science Foundation (No. 2020M670345), National Natural Science Foundation (No. EEC-1647722), Beijing Municipal Science & Technology Commission (No. Z191100007219003), and Materials Research Collaborative Access Team (MRCAT) operations, beamline 10-BM, the Department of Energy and the MRCAT member institutions. The authors also acknowledge the use of beamline 11-ID-C at Advanced Photon Source (APS).

Return