Journal Home > Volume 15 , Issue 2

Low-dimensional inorganic nanostructures such as quantum dots as well as one- and two-dimensional nanostructures are widely studied and already used in high-performance infrared photodetectors. These structures feature large surface-to-volume ratios, tunable light absorption, and electron-limiting effects. This article reviews the state-of-the-art research of low-dimensional inorganic nanostructures and their application for infrared photodetection. Thanks to nano-structuring, a narrow bandgap, hybrid systems, surface-plasmon resonance, and doping, many common semiconductors have the potential to be used for infrared detection. The basic approaches towards infrared detection are summarized. Furthermore, a selection of very important and special nanostructured materials and their remarkable infrared-detection properties are introduced (e.g., black phosphorus, graphene-based, MoX2-based, Ⅲ-Ⅶ group). Each section in this review describes the corresponding photosensitive properties in detail. The article concludes with an outlook of anticipated future developments in the field.


menu
Abstract
Full text
Outline
About this article

Recent developments of infrared photodetectors with low- dimensional inorganic nanostructures

Show Author's information Xin Hu( )Jianghong WuMingzhou WuJunqing Hu( )
College of Health Science and Environmental EngineeringShenzhen Technology UniversityShenzhen518118China

Abstract

Low-dimensional inorganic nanostructures such as quantum dots as well as one- and two-dimensional nanostructures are widely studied and already used in high-performance infrared photodetectors. These structures feature large surface-to-volume ratios, tunable light absorption, and electron-limiting effects. This article reviews the state-of-the-art research of low-dimensional inorganic nanostructures and their application for infrared photodetection. Thanks to nano-structuring, a narrow bandgap, hybrid systems, surface-plasmon resonance, and doping, many common semiconductors have the potential to be used for infrared detection. The basic approaches towards infrared detection are summarized. Furthermore, a selection of very important and special nanostructured materials and their remarkable infrared-detection properties are introduced (e.g., black phosphorus, graphene-based, MoX2-based, Ⅲ-Ⅶ group). Each section in this review describes the corresponding photosensitive properties in detail. The article concludes with an outlook of anticipated future developments in the field.

Keywords: low-dimensional, hybrid structures, infrared photodetectors, inorganic nanostructures

References(136)

1

Qiao, S.; Liu, J. H.; Niu, X. N.; Liang, B. L.; Fu, G. S.; Li, Z. Q.; Wang, S. F.; Ren, K. L.; Pan, C. F. Piezophototronic effect enhanced photoresponse of the flexible Cu(In, Ga)Se2(CIGS) heterojunction photodetectors. Adv. Funct. Mater. 2018, 28, 1707311.

2

Xu, K. M.; Zhou, W. J.; Ning, Z. J. Integrated structure and device engineering for high performance and scalable quantum dot Infrared photodetectors. Small 2020, 16, 2003397.

3

Guan, X. W.; Yu, X. C.; Periyanagounder, D.; Benzigar, M. R.; Huang, J. K.; Lin, C. H.; Kim, J.; Singh, S.; Hu, L.; Liu, G. Z. et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 2021, 9, 2001708.

4

Yang, M.; Han, Q.; Liu, X. C.; Han, J. Y.; Zhao, Y. F.; He, L.; Gou, J.; Wu, Z. M.; Wang, X. R.; Wang, J. Ultrahigh stability 3D Ti Bi2Se3/ MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 2020, 30, 1909659.

5

Tadeo, I. J.; Mukhokosi, E. P.; Krupanidhi, S. B.; Umarji, A. M. Low-cost VO2 (M1) thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture for IR photodetection. RSC Adv. 2019, 9, 9983–9992.

6

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high- detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

7

Ismailov, N. J. Performance improving of small-dimension IR photodetectors. Tech. Phys. Lett. 2011, 37, 458–460.

8

Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L. L.; Li, T. X.; Martyniuk, P.; Rogalski, A.; Hu, W. D. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396.

9

Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano, 2008, 2, 833–840.

10

Kinch, M. A. HgCdTe: Recent trends in the ultimate IR semiconductor. J. Electron. Mater. 2010, 39, 1043–1052.

11

Guo, Y. B.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. J. Mater. Chem. C, 2017, 5, 1436–1442.

12

Martinez, B.; Ramade, J.; Livache, C.; Goubet, N.; Chu, A.; Gréboval, C.; Qu, J. L.; Watkins, W. L.; Becerra, L.; Dandeu, E. et al. HgTe nanocrystal inks for extended short‐wave infrared detection. Adv. Opt. Mater. 2019, 7, 1900348.

13

Jeong, M. K.; Kang, J.; Park, D.; Yim, S.; Jung, I. H. A conjugated polyelectrolyte interfacial modifier for high performance near-infrared quantum-dot photodetectors. J. Mater. Chem. C 2020, 8, 2542–2550.

14

Mukherjee, S.; Jana, S.; Sinha, T. K.; Das, S.; Ray, S. K. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids. Nanoscale Adv. 2019, 1, 3279–3287.

15

Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.

16

Wang, F. K.; Zhang, Y.; Gao Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

17

Jo, S. H.; Park, H. Y.; Kang, D. H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl)triethoxysilane and triphenylphosphine treatment. Adv. Mater. 2016, 28, 6711–6718.

18

Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

19

Xie, Y.; Liang, F.; Wang, D.; Chi, S. M.; Yu, H. H.; Lin, Z. S.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y.; Wu Y. C. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858.

20

Zhang, S. K.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Wang, H. L.; Zhu, L. Q.; Jiang, W.; Liu, J. J.; Sun, L. X.; Lin, T. et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv. Funct. Mater. 2020, 30, 2006156.

21

Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

22

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

23

Nandi, S.; Tripathi, R.; Adhikary, G. D.; Kumar, P.; Misra, A. Ultrahigh infrared photoresponse in titanium sesquioxide at mott- insulator transition. Adv. Mater. Interfaces 2020, 7, 2001091.

24

Xie, L.; Wang, J.; Li, J.; Li, C.; Zhang, Y.; Zhu, B. P.; Guo, Y. Z.; Wang, Z. C.; Zhang, K. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater. 2020, 6, 2000962.

25

Jang, H.; Seok, Y.; Choi, Y.; Cho, S. H.; Watanabe, K.; Taniguchi, T.; Lee, K. High-performance near-infrared photodetectors based on surface-doped InSe. Adv. Funct. Mater. 2021, 31, 2006788.

26

Rajeswaran, B.; Tadeo, I. J.; Umarji, A. M. IR photoresponsive VO2 thin films and electrically assisted transition prepared by single-step chemical vapor deposition. J. Mater. Chem. C 2020, 8, 12543–12550.

27

Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

28

Jana, M. K.; Chithaiah, P.; Murali, B.; Krupanidhi, S. B.; Biswas, K.; Rao, C. N. R. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface. J. Mater. Chem. C 2013, 1, 6184–6187.

29

Zhao, X. X.; Yin, Q.; Huang, H.; Yu, Q.; Liu, B.; Yang, J.; Dong, Z.; Shen, Z. J.; Zhu, B. P.; Liao, L. et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res. 2021, 14, 1955–1960.

30

Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.

31

Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493.

32

Kim, D.; Kim, D. H.; Lee, J. H.; Grossman, J. C. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 2013, 110, 196802.

33

Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

34

Jo, S. H.; Lee, H. W.; Shim, J.; Heo, K.; Kim, M.; Song, Y. J.; Park, J. H. Highly efficient infrared photodetection in a gate-controllable van der Waals heterojunction with staggered bandgap alignment. Adv. Sci. 2018, 5, 1700423.

35

Ran, W. H.; Wang, L. L.; Zhao, S. F.; Wang, D. P.; Yin, R. Y.; Lou, Z.; Shen, G. Z. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 2020, 32, 1908419.

36

Chen, Y. F.; Ma, W. L.; Tan, C. W.; Luo, M.; Zhou, W.; Yao, N. J.; Wang, H.; Zhang, L. L.; Xu, T. F.; Tong, T. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 2021, 31, 2009554.

37

Lei, S. D.; Sobhani, A.; Wen, F. F.; George, A.; Wang, Q. Z.; Huang, Y. H.; Dong, P.; Li, B.; Najmaei, S.; Bellah, J. et al. Ternary CuIn7Se11: Towards ultra-thin layered photodetectors and photovoltaic devices. Adv. Mater. 2014, 26, 7666–7672.

38

Dong, Y. F.; Chen, M. Y.; Yiu, W. K.; Zhu, Q.; Zhou, G. D.; Kershaw, S. V.; Ke, N.; Wong, C. P.; Rogach, A. L.; Zhao, N. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 nm at room temperature. Adv. Sci. 2020, 7, 2000068.

39

Mochalov, L.; Logunov, A.; Prokhorov, I.; Sazanova, T.; Kudrin, A.; Yunin, P.; Zelentsov, S.; Letnianchik, A.; Starostin, N.; Boreman, G. et al. Plasma-chemical synthesis of lead sulphide thin films for near-IR photodetectors. Plasma Chem. Plasma Process. 2021, 41, 493–506.

40

Lan, X. Z.; Voznyy, O.; Kiani, A.; de Arquer, F. P. G.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.

41

Zhang, Z. L.; Chen, Z. H.; Yuan, L.; Chen, W. J.; Yang, J. F.; Wang, B.; Wen, X. M.; Zhang, J. B.; Hu, L.; Stride, J. A. et al. A new passivation route leading to over 8% efficient PbSe quantum-dot solar cells via direct ion exchange with perovskite nanocrystals. Adv. Mater. 2017, 29, 1703214.

42

Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Böberl, M.; Hesser, G.; Yarema, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M. et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683–687.

43

Jagtap, A.; Goubet, N.; Livache, C.; Chu, A.; Martinez, B.; Gréboval, C.; Qu, J. L.; Dandeu, E.; Becerra, L.; Witkowski, N. et al. Short wave infrared devices based on HgTe nanocrystals with air stable performances. J. Phys. Chem. C. 2018, 122, 14979–14985.

44

Chen, M. L.; Lan, X. Z.; Tang, X.; Wang, Y. Y.; Hudson, M. H.; Talapin, D. V.; Guyot-Sionnest, P. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photonics 2019, 6, 2358–2365.

45

Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H. Quintero-Bermudez, R. et al. Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 2017, 29, 1703627.

46

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene- quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

47

Yang, C.; Feng, S. L.; Tang, L. L.; Shen, J.; Wei, X. Z.; Shi, H. F. Electrochemical epitaxial grown PbS nanorods array on graphene film for high-performance photodetector. Adv. Mater. Interfaces 2020, 8, 2001464.

48

Georgitzikis, E.; Malinowski, P. E.; Maes, J.; Hadipour, A.; Hens, Z.; Heremans, P.; Cheyns, D. Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering. Adv. Funct. Mater. 2018, 28, 1804502.

49

Schornbaum, J.; Winter, B.; Schießl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798–5806.

50

Sliz, R.; Lejay, M.; Fan, J. Z.; Choi, M. J.; Kinge, S.; Hoogland, S.; Fabritius, T.; de Arquer, F. P. G.; Sargent, E. H. Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 2019, 13, 11988–11995.

51

Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics, 2016, 10, 81–92.

52

Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953–2103960.

53

Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

54

Gomathi, P. T.; Sahatiya, P.; Badhulika, S. Large-area, flexible broadband photodetector based on ZnS-MoS2 hybrid on paper substrate. Adv. Funct. Mater. 2017, 27, 1701611.

55

Thurakkal, S.; Feldstein, D.; Perea-Causín, R.; Malic, E.; Zhang, X. Y. The art of constructing black phosphorus nanosheet based heterostructures: from 2D to 3D. Adv. Mater. 2021, 33, 2005254.

56

Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

57

Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

58

Woods, C. R.; Britnell, L.; Eckmann, A.; Ma, R. S.; Lu, J. C.; Guo, H. M.; Lin, X.; Yu, G. L.; Cao, Y.; Gorbachev, R. V. et al. Commensurate- incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 2014, 10, 451–456.

59

Ding, Y.; Zhou, N.; Gan, L.; Yan, X. X.; Wu, R. Z.; Abidi, I. H.; Waleed, A.; Pan, J.; Ou, X. W.; Zhang, Q. C. et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–Vis–IR photodetectors. Nano Energy 2018, 49, 200–208.

60

Castilla, S.; Vangelidis, I.; Pusapati, V. V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 2020, 11, 4872.

61

Zhang, J.; Hong, H.; Lian, C.; Ma, W.; Xu, X. Z.; Zhou, X.; Fu, H. X.; Liu, K. H.; Meng, S. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 2017, 4, 1700086.

62

Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

63

Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

64

Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.

65

Xue, H.; Wang, Y. D.; Dai, Y. Y.; Kim, W.; Jussila, H.; Qi, M.; Susoma, J.; Ren, Z. Y.; Dai, Q.; Zhao, J. L. et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv. Funct. Mater. 2018, 28, 1804388.

66

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

67

Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.

68

Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268-1700275.

69
Berencén, Y.; Prucnal, S.; Liu, F.; Skorupa, I.; Hübner, R.; Rebohle, L.; Zhou, S. Q.; Schneider, H.; Helm, M.; Skorupa, W. Room-temperature short-wavelength infrared Si photodetector. Sci. Rep. 2017, 7, 43688. Gao, S.; Wang, Z. Q.; Wang, H. D.; Meng, F. X.; Wang, P. F.; Chen, S.; Zeng, Y. H.; Zhao, J. L.; Hu, H. G.; Cao, R. et al. Graphene/ MoS2/graphene vertical heterostructure-based broadband photodetector with high performance. Adv. Mater. Interfaces 2020, 8, 2001730.https://doi.org/10.1038/srep43688
DOI
70

Manga, K. K.; Wang, J. Z.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids. Adv. Mater. 2012, 24, 1697–1702.

71

Lähnemann, J.; Ajay, A.; Den Hertog, M. I.; Monroy, E. Near- infrared intersubband photodetection in GaN/AlN nanowires. Nano Lett. 2017, 17, 6954–6960.

72

Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

73

Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface Plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.

74

Chang, K. E.; Kim, C.; Yoo, T. J.; Kwon, M. G.; Heo, S.; Kim, S. Y.; Hyun, Y.; Yoo, J. I.; Ko, H. C.; Lee, B. H. High-responsivity near- infrared photodetector using gate-modulated graphene/germanium schottky junction. Adv. Electro. Mater. 2019, 5, 1800957.

75

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/ Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

76

Dai, Y. J.; Wang, X. F.; Peng, W. B.; Xu, C.; Wu, C. S.; Dong, K.; Liu, R. Y.; Wang, Z. L. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro- phototronic effect: An approach for photosensing below bandgap energy. Adv. Mater. 2018, 30, 1705893.

77

Prakash, N.; Kumar, G.; Singh, M.; Barvat, A.; Pal, P.; Singh, S. P.; Singh, H. K.; Khanna, S. P. Binary multifunctional ultrabroadband self-powered g-C3N4/Si heterojunction high-performance photodetector. Adv. Opt. Mater. 2018, 6, 1800191.

78

Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

79

Chang, Y. R.; Ho, P. H.; Wen, C. Y.; Chen, T. P.; Li, S. S.; Wang, J. Y.; Li, M. K.; Tsai, C. A.; Sankar, R.; Wang, W. H. et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector. ACS Photonics 2017, 4, 2930–2936.

80

Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ASC Nano 2015, 9, 1886–1894.

81

Yang, M.; Wang, J.; Zhao, Y. F.; He, L.; Ji, C. H.; Liu, X. C.; Zhou, H. X.; Wu, Z. M.; Wang, X. R.; Jiang, Y. D. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers. ACS Nano 2019, 13, 755–763.

82

Sun, J. M.; Peng, M.; Zhang, Y. S.; Zhang, L.; Peng, R.; Miao, C. C.; Liu, D.; Han, M. M.; Feng, R. F.; Ma, Y. D. et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019, 19, 5920–5929.

83

Umezu, I.; Warrender, J. M.; Charnvanichborikarn, S.; Kohno, A.; Williams, J. S.; Tabbal, M.; Papazoglou, D. G.; Zhang, X. C.; Aziz, M. J. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J. Appl. Phys. 2013, 113, 213501-213507.

84

Lourenço, M. A.; Hughes, M. A.; Lai, K. T.; Sofi, I. M.; Ludurczak, W.; Wong, L.; Gwilliam, R. M.; Homewood, K. P. Silicon-modified rare-earth transitions-a new route to near- and mid-IR photonics. Adv. Funct. Mater. 2016, 26, 1986–1994.

85

Xu, X. B.; Chueh, C. C.; Jing, P. F.; Yang, Z. B.; Shi, X. L.; Zhao, T.; Lin, L. Y.; Jen, A. K. Y. High-performance near-IR photodetector using low-bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 2017, 27, 1701053.

86

Abbasi, M.; Evans, C. I.; Chen, L. Y.; Natelson, D. Single metal photo­detectors using plasmonically-active asymmetric gold nanostructures. ACS Nano 2020, 14, 17535–17542.

87

Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.

88

Dubey, A.; Mishra, R.; Hsieh, Y. H.; Cheng, C. W.; Wu, B. H.; Chen, L. J.; Gwo, S.; Yen, T. J. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. 2020, 7, 2002274.

89

Fang, Z. Y.; Liu, Z.; Wang, Y. M.; Ajayan, P. M.; Nordlander, P.; Halas, N. J. Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808–3813.

90

Yao, Y.; Shankar, R.; Rauter, P.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 2014, 14, 3749–3754.

91

Nordin, L.; Kamboj, A.; Petluru, P.; Shaner, E.; Wasserman, D. All-epitaxial integration of long-wavelength infrared plasmonic materials and detectors for enhanced responsivity. ACS Photonics 2020, 7, 1950–1956.

92

Huang, H. X.; Zhang, D. H.; Wei, N.; Wang, S.; Peng, L. M. Plasmon- induced enhancement of infrared detection using a carbon nanotube diode. Adv. Opt. Mater. 2017, 5, 1600865.

93

Peng, R. M.; Khaliji, K.; Youngblood, N.; Grassi, R.; Low, T.; Li, M. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 2017, 17, 6315–6320.

94

Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide- integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

95

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

96

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

97

Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.

98

Liu, Q. R.; Hu, S. Y.; Zhang, C. X.; Ouyang, H.; Jiang, T. Polarization- dependent and wavelength-tunable optical limiting and transparency of multilayer selenium-doped black phosphorus. Adv. Opt. Mater. 2021, 9, 2001562.

99

Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419–5424.

100

Vabbina, P.; Choudhary, N.; Chowdhury, A. A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206–15213.

101

Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, M. A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

102

Li, G. H.; Liu, L.; Wu, G.; Chen, W.; Qin, S. J.; Wang, Y.; Zhang, T. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small 2016, 12, 5019– 5026.

103

Shimatani, M.; Fukushima, S.; Okuda, S.; Ogawa, S. High- performance graphene/InSb heterojunction photodetectors for high-resolution mid-infrared image sensors. Appl. Phys. Lett. 2020, 117, 173102.

104

Moein, T.; Gailevičius, D.; Katkus, T.; Ng, S. H.; Lundgaard, S.; Moss, D. J.; Kurt, H.; Mizeikis, V.; Staliūnas, K.; Malinauskas, M. et al. Optically-thin broadband graphene-membrane photodetector. Nanomaterials 2020, 10, 407.

105

Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/ Graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.

106

Luo, W. G.; Cao, Y. F.; Hu, P. G.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. F.; Zhang, X. H.; Wang, K. Y. Gate tuning of high- performance InSe-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418–1423.

107

Nalwa, H. S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602.

108

Lee H.; Bak S.; Kim J.; Lee H. The effect of the dopant's reactivity for high-performance 2D MoS2 thin-film transistor. Nano Res. 2021, 14, 198–204.

109

Wu, Z. Q.; Yang, J. L.; Manjunath, N. K.; Zhang, Y. J.; Feng, S. R.; Lu, Y. H.; Wu, J. H.; Zhao, W. W.; Qiu, C. Y.; Li, J. F. et al. Gap-mode surface-Plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, 1706527.

110

Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.

111

Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator- free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950–960.

112

Xu, H.; Han, X.; Dai, X.; Liu, W.; Wu, J.; Zhu, J.; Kim, D.; Zou, G.; Sablon, K. A.; Sergeev, A.; Guo, Z.; Liu, H. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561-1706569.

113

Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv. Mater. 2018, 30, 1705542-1705551.

114

Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L. F.; Liang, S. J. et al. Asymmetric schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 2018, 28, 1800657-1800666.

115

Deng, J. N.; Zong, L. Y.; Zhu, M. S.; Liao, F. Y.; Xie, Y. Y.; Guo, Z. X.; Liu, J.; Lu, B. R.; Wang, J. L.; Hu, W. D. et al. MoS2/HfO2/ Silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 2019, 29, 1906242.

116

Hu, X.; Li, X. Y.; Li, G. Y.; Ji, T.; Ai, F. J.; Wu, J. H.; Ha, E. N.; Hu, J. Q. Recent progress of methods to enhance photovoltaic effect for self-powered heterojunction photodetectors and their applications in inorganic low-dimensional structures. Adv. Funct. Mater. 2021, 31, 2011284–2011306.

117

Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

118

Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-Ⅱ MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

119

Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.

120

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

121

Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

122

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

123

Wu, D.; Jia, C.; Shi, F. H.; Zeng, L. H.; Lin P.; Dong, L.; Shi Z. F.; Tian Y. T.; Li X. J.; Jie J. S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A, 2020, 8, 3632–3642.

124

Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.

125

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

126

Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223–227.

127

Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K.; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo- responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022–7028.

128

Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020, 14, 9098–9106.

129

Dai, M. J.; Chen, H. Y.; Feng, R.; Feng, W.; Hu, Y. X.; Yang, H. H.; Liu, G. B.; Chen, X. S.; Zhang, J.; Xu, C. Y. et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface Plasmon resonance and asymmetric Schottky junction. ACS Nano 2018, 12, 8739–8747.

130

Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

131

Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.

132

Rahman, M.; Davey, K.; Qiao, S. Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129.

133

Qin, J. K.; Qiu, G.; He, W.; Jian, J.; Si, M. W.; Duan, Y. Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H. Y.; Shao, W. Z. et al. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.

134

Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 2016, 26, 4551–4560.

135

Afzal, A. M.; Javed, Y.; Akhtar Shad, N.; Iqbal, M. Z.; Dastgeer, G.; Munir Sajid, M.; Mumtaz, S., Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/ rhenium diselenide van Der Waals heterojunction diode. Nanoscale 2020, 12, 3455–3468.

136

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 March 2021
Revised: 19 May 2021
Accepted: 31 May 2021
Published: 04 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21561031, 51972055, and 21701135), the Shenzhen Science and Technology Research Project (No. JCYJ20180508152903208), the Shenzhen Pengcheng Scholar Program, the Guangdong Basic and Applied Basic Research Foundation(No. 2020A1515010258) and Shenzhen Bay Laboratory Open Fund (No. SZBL2020090501002).

Return