Journal Home > Volume 15 , Issue 2

It remains challenging to develop economical and bifunctional electrocatalysts toward oxygen/hydrogen evolution reactions (OER/HER). Herein, we construct Co9S8 nanoflakes decorated Co3O4 nanoarrays with enriched heterogeneous interface zones on Ni foam (Co9S8@Co3O4/NF) via a novel step-wise approach. The Co9S8@Co3O4/NF hybrid manifests excellent performance with low overpotentials of 130 mV for HER (10 mA·cm–2) and 331 mV for OER (100 mA·cm–2), delivering a small voltage of 1.52 V for water splitting at 10 mA·cm–2 as well as outstanding catalytic durability, which surpasses precious metals and previously reported earth-abundant nanocatalysts. Further experimental and theoretical investigations demonstrate that the excellent performance is attributed to the followings: (ⅰ) Highly conductive Ni facilitates the efficient charge transfer; (ⅱ) porous core-shell nanoarchitecture benefits the infiltration and transportation of gases/ions; (ⅲ) heterogeneous interface zones synergistically lower the chemisorption energy of hydrogen/oxygen intermediates. This work will shed light on the controllable synthesis and engineering of heterostructure nanomaterials for clean energy storage and conversion technologies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting

Show Author's information Xiaoyang Wang1,§Yu He1,§Xiaopeng Han1( )Jun Zhao1Lanlan Li2Jinfeng Zhang1Cheng Zhong1Yida Deng1( )Wenbin Hu1
School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional MaterialsKey Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjin 300072 China
School of Materials Science and Engineering School of Materials Science and EngineeringTianjin 300130 China

§ Xiaoyang Wang and Yu He contributed equally to this work.

Abstract

It remains challenging to develop economical and bifunctional electrocatalysts toward oxygen/hydrogen evolution reactions (OER/HER). Herein, we construct Co9S8 nanoflakes decorated Co3O4 nanoarrays with enriched heterogeneous interface zones on Ni foam (Co9S8@Co3O4/NF) via a novel step-wise approach. The Co9S8@Co3O4/NF hybrid manifests excellent performance with low overpotentials of 130 mV for HER (10 mA·cm–2) and 331 mV for OER (100 mA·cm–2), delivering a small voltage of 1.52 V for water splitting at 10 mA·cm–2 as well as outstanding catalytic durability, which surpasses precious metals and previously reported earth-abundant nanocatalysts. Further experimental and theoretical investigations demonstrate that the excellent performance is attributed to the followings: (ⅰ) Highly conductive Ni facilitates the efficient charge transfer; (ⅱ) porous core-shell nanoarchitecture benefits the infiltration and transportation of gases/ions; (ⅲ) heterogeneous interface zones synergistically lower the chemisorption energy of hydrogen/oxygen intermediates. This work will shed light on the controllable synthesis and engineering of heterostructure nanomaterials for clean energy storage and conversion technologies.

Keywords: nanocomposite, electrocatalysis, oxygen evolution reaction, hydrogen evolution reaction, heterointerface

References(63)

1

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, e1807134.

2

She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, M. K. H. Bubble-like Fe-encapsulated N, S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn–air batteries. Nano Res. 2020, 13, 2175–2182.

3

Li, X.; Wang, J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2020, 2, 3–32.

4

Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni–Se–S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.

5

Dong, B. B.; Cui, J. Y.; Liu, T. F.; Gao, Y. Y.; Qi, Y. Y.; Li, D.; Xiong, F. Q.; Zhang, F. X.; Li, C. Development of novel perovskite–like oxide photocatalyst LiCuTa3O9 with dual functions of water reduction and oxidation under visible light irradiation. Adv. Energy Mater. 2018, 8, 1801660.

6

Ali, A.; Shen, P. K. Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energ. Rev. 2020, 3, 370–394.

7

Zou, Z. X.; Wang, X. Y.; Huang, J. S.; Wu, Z. C.; Gao, F. An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting. J. Mater. Chem. A 2019, 7, 2233–2241.

8

You, B.; Zhang, Y. D.; Yin, P. Q.; Jiang, D. E.; Sun, Y. J. Universal molecular-confined synthesis of interconnected porous metal oxides–N–C frameworks for electrocatalytic water splitting. Nano Energy 2018, 48, 600–606.

9

Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen–doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

10

Wang, Z. Y.; Yang, J.; Wang, W. Y.; Zhou, F. Y.; Zhou, H.; Xue, Z. G.; Xiong, C.; Yu, Z. Q.; Wu, Y. Hollow cobalt–nickel phosphide nanocages for efficient electrochemical overall water splitting. Sci. China Mater. 2020, 64, 861–869.

11

Menezes, P. W.; Indra, A.; Zaharieva, I.; Walter, C.; Loos, S.; Hoffmann, S.; Schlögl, R.; Dau, H.; Driess, M. Helical cobalt borophosphates to master durable overall water-splitting. Energy Environ. Sci. 2019, 12, 988–999.

12

Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 2018, 11, 2858–2864.

13

Du, C. F.; Sun, X. L.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y. H.; Li, S. Q.; Liu, X. H.; Yan, Q. Y. V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2020, 2, 950–959.

14

He, Y.; Zhang, J. F.; He, G. W.; Han, X. P.; Zheng, X. R.; Zhong, C.; Hu, W. B.; Deng, Y. D. Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. Nanoscale 2017, 9, 8623–8630.

15

Han, X. P.; Wu, X. Y.; Deng, Y. D.; Liu, J.; Lu, J.; Zhong, C.; Hu, W. B. Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 2018, 8, 1800935.

16

Zheng, X. R.; Wu, X. Y.; Han, X. P.; Deng, Y. D.; Wang, J. H. In-situ multi-deposition process for cobalt–sulfide synthesis with efficient bifunctional catalytic activity. Ferroelectrics 2018, 523, 119–125.

17

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Zhang, Z. J.; Ni, B. J. Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 2020, 13, 293–314.

18

Zhou, Y. F.; Wang, Z. X.; Pan, Z. Y.; Liu, L.; Xi, J. Y.; Luo, X. L.; Shen, Y. Exceptional performance of hierarchical Ni–Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1806769.

19

Zhao, C. Y.; Zhang, Y. F.; Chen, L. F.; Yan, C. Y.; Zhang, P. X.; Ang, J. M.; Lu, X. H. Self-assembly-assisted facile synthesis of MoS2-based hybrid tubular nanostructures for efficient bifunctional electrocatalysis. ACS Appl. Mater. Inter. 2018, 10, 23731–23739.

20

Zang, X. N.; Chen, W. S.; Zou, X. L.; Hohman, J. N.; Yang, L. J.; Li, B. X.; Wei, M. S.; Zhu, C. H.; Liang, J. M.; Sanghadasa, M. et al. Self–assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.

21

Huang, G.; Xiao, Z. H.; Chen, R.; Wang, S. Y. Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustain. Chem. Eng. 2018, 6, 15954–15969.

22

Zhou, Q. Q.; Li, T. T.; Qian, J. J.; Hu, Y.; Guo, F. Y.; Zheng, Y. Q. Self–supported hierarchical CuOx@Co3O4 heterostructures as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 14431–14439.

23

Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377.

24

Li, C. C.; Hou, J. X.; Wu, Z. X.; Guo, K.; Wang, D. L.; Zhai, T. Y.; Li, H. Q. Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Sci. China Mater. 2017, 60, 918–928.

25

Zu, D.; Wang, H. Y.; Lin, S.; Ou, G.; Wei, H. H.; Sun, S. Q.; Wu, H. Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Res. 2019, 12, 2150–2163.

26

Wu, M. J.; Zhang, G. X.; Tong, H.; Liu, X. H.; Du, L.; Chen, N.; Wang, J.; Sun, T. X.; Regier, T.; Sun, S. H. Cobalt (Ⅱ) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra–stable rechargeable Zn–air flow battery. Nano Energy 2021, 79, 105409.

27

Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

28

Han, X. P.; He, G. W.; He, Y.; Zhang, J. F.; Zheng, X. R.; Li, L. L.; Zhong, C.; Hu, W. B.; Deng, Y. D.; Ma, T. Y. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electro-catalysis. Adv. Energy Mater. 2018, 8, 1702222.

29

Wu, H. M.; Feng, C. Q.; Zhang, L.; Zhang, J. J.; Wilkinson, D. P. Non–noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energ. Rev. 2021, doi: 10.1007/s41918-020-00086-z.

30

Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, H. Jr.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite–type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

31

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

32

Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal., B–Environ. 2019, 254, 186–193.

33

Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G.; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H. et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259–2267.

34

Li, J. W.; Xu, P. M.; Zhou, R. F.; Li, R.; Qiu, L. J.; Jiang, S. P.; Yuan, D. S. Co9S8–Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim. Acta 2019, 299, 152–162.

35

Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

36

Xiong, Y.; Xu, L. L.; Jin, C. D.; Sun, Q. F. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl. Catal. B–Environ. 2019, 254, 329–338.

37

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe) S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B–Environ. 2019, 247, 107–114.

38

Zhang, J.; Chen, Z. L.; Liu, C.; Zhao, J.; Liu, S. L.; Rao, D. W.; Nie, A.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Sci. China Mater. 2020, 63, 249–257.

39

Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2021, 14, 961–968.

40

Wu, X. Y.; Han, X. P.; Ma, X. Y.; Zhang, W.; Deng, Y. D.; Zhong, C.; Hu, W. B. Morphology-controllable synthesis of Zn-Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis. ACS Appl. Mater. Inter. 2017, 9, 12574–12583.

41

Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g–C3N4–CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.

42

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/ FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

43

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristall. 2005, 220, 567–570.

44

Vanderbilt, D. Soft self–consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

45

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

46

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel–cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

47

Rossmeisl, J.; Nørskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B 2006, 110, 21833–21839.

48

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int., Ed. 2006, 45, 2897–2901.

49

Liu, S.; Cheng, H.; Xu, K.; Ding, H.; Zhou, J. Y.; Liu, B. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dual modulation via electrochemical reduction activiation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett. 2019, 4, 423–429.

50

Scott, J. A.; Angeloski, A.; Aharonovich, I.; Lobo, C. J.; McDonagh, A.; Toth, M. In situ study of the precursor conversion reactions during solventless synthesis of Co9S8, Ni3S2, Co and Ni nanowires. Nanoscale 2018, 10, 15669–15676.

51

Xie, B. Q.; Yu, M. Y.; Lu, L. H.; Feng, H. Z.; Yang, Y.; Chen, Y.; Cui, H. D.; Xiao, R. B.; Liu, J. Pseudocapacitive Co9S8/graphene electrode for high-rate hybrid supercapacitors. Carbon 2019, 141, 134–142.

52

Yao, T. H.; Li, Y. L.; Liu, D. Q.; Gu, Y. P.; Qin, S. C.; Guo, X.; Guo, H.; Ding, Y. Q.; Liu, Q. M.; Chen, Q. et al. High-performance free–standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate)/reduced graphene oxide. J. Power Sources 2018, 379, 167–173.

53

Feng, C.; Zhang, J. F.; He, Y.; Zhong, C.; Hu, W. B.; Liu, L.; Deng, Y. D. Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 2015, 9, 1730–1739.

54

Zhang, X.; Zhao, Y. Q.; Xu, C. L. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 2014, 6, 3638–3646.

55

Yu, Y. Y.; Zhang, J. L.; Zhong, M.; Guo, S. W. Co3O4 nanosheet arrays on Ni foam as electrocatalyst for oxygen evolution reaction. Electrocatalysis 2018, 9, 653–661.

56

Zhang, Z. M.; Wang, Q.; Zhao, C. J.; Min, S. D.; Qian, X. Z. One–step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors. ACS Appl. Mater. Inter. 2015, 7, 4861–4868.

57

Pu, J.; Wang, Z. H.; Wu, K. L.; Yu, N.; Sheng, E. H. Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 785–791.

58

Gao, W. K.; Qin, J. F.; Wang, K.; Yan, K. L.; Liu, Z. Z.; Lin, J. H.; Chai, Y. M.; Liu, C. G.; Dong, B. Facile synthesis of Fe-doped Co9S8 nano-microspheres grown on nickel foam for efficient oxygen evolution reaction. Appl. Surf. Sci. 2018, 454, 46–53.

59

Lv, Q. L.; Yang, L.; Wang, W.; Lu, S. Q.; Wang, T. E.; Cao, L. X.; Dong, B. H. One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. J. Mater. Chem. A 2019, 7, 1196–1205.

60

Weidler, N.; Schuch, J.; Knaus, F.; Stenner, P.; Hoch, S.; Maljusch, A.; Schaäfer, R.; Kaiser, B.; Jaegermann, W. X-ray photoelectron spectroscopic investigation of plasma–enhanced chemical vapor deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J. Phys. Chem. C 2017, 121, 6455–6463.

61

Huang, Z. F.; Wang, J.; Peng, Y. C.; Jung, C. Y.; Fisher, A.; Wang, X. Design of efficient bifunctional oxygen reduction/evolution electro-catalyst: recent advances and perspectives. Adv. Energy Mater. 2017, 7, 1700544.

62

Wang, J.; Zhang, H.; Wang, X. Recent methods for the synthesis of noble-metal-free hydrogen-evolution electrocatalysts: From nanoscale to sub-nanoscale. Small Methods 2017, 6, 1700118.

63

Du, F.; Shi, L.; Zhang, Y. T.; Li, T.; Wang, J. L.; Wen, G. H.; Alsaedi, A.; Hayat, T.; Zhou, Y.; Zou, Z. G. Foam–like Co9S8/Ni3S2 hetero-structure nanowire arrays for efficient bifunctional overall water–splitting. Appl. Catal., B–Environ. 2019, 253, 246–252.

File
12274_2021_3632_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2021
Revised: 27 May 2021
Accepted: 30 May 2021
Published: 19 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51972224).

This work was supported by the National Natural Science Foundation of China (51972224).

Return