Journal Home > Volume 15 , Issue 2

Capturing solar energy as heat for water treatment has become a substantial approach to obtain freshwater. To obtain higher performance, the understanding of the mechanism of how water molecules interact with the interface is particularly fundamental, because the migration process of water molecules on the evaporation interface will directly affect the performance of the device. Herein we regulate the number of hydroxyl groups on the surface of reduced graphene oxide quantitatively, to study the effect of different wettability of interfaces on the performance of solar water generators. The water evaporation performance displays a volcanic shape as increasing wettability. Calculated by the computational chemistry method, deviation from proper wetting humidity is not conducive to the migration of water molecules from the surface. The double-edged sword effect of wettability on performances is clarified, and the surface energy density is the key to break through the limit by the finite element method.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Volcanic relationship between wettability of the interface and water migration rate in solar steam generation systems

Show Author's information Qiang Fu1,§Xiaojuan Li3,§Ning Ma2( )Dier Shi1Pohua Chen1Junliang Sun1( )
College of Chemistry and Molecular Engineering Peking University Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing 100871 China
Hubei Key Laboratory of Polymer Materials Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education) Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials School of Materials Science and Engineering Hubei UniversityWuhan 430062 China
College of Physics Sichuan UniversityChengdu 610065 China

§ Qiang Fu and Xiaojuan Li contributed equally to this work.

Abstract

Capturing solar energy as heat for water treatment has become a substantial approach to obtain freshwater. To obtain higher performance, the understanding of the mechanism of how water molecules interact with the interface is particularly fundamental, because the migration process of water molecules on the evaporation interface will directly affect the performance of the device. Herein we regulate the number of hydroxyl groups on the surface of reduced graphene oxide quantitatively, to study the effect of different wettability of interfaces on the performance of solar water generators. The water evaporation performance displays a volcanic shape as increasing wettability. Calculated by the computational chemistry method, deviation from proper wetting humidity is not conducive to the migration of water molecules from the surface. The double-edged sword effect of wettability on performances is clarified, and the surface energy density is the key to break through the limit by the finite element method.

Keywords: computational modeling, wettability, solar water steam generation, surface interface reaction, volcanic relationship

References(63)

1

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

2

Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core–shell polydopamine@mxene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

3

Yang, M. Q.; Shen, L.; Lu, Y. Y.; Chee, S. W.; Lu, X.; Chi, X.; Chen, Z. H.; Xu, Q. H.; Mirsaidov, U.; Ho, G. W. Disorder engineering in monolayer nanosheets enabling photothermic catalysis for full solar spectrum (250–2500 nm) harvesting. Angew. Chem. , Int. Ed. 2019, 58, 3077–3081.

4

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

5

Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

6

Tao, P.; Chang, C.; Tong, Z.; Bao, H.; Song, C. Y.; Wu, J. B.; Shang, W.; Deng, T. Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials. Energy Environ. Sci. 2019, 12, 1613–1621.

7

Yang, P. H.; Liu, K.; Chen, Q.; Li, J.; Duan, J. J.; Xue, G. B.; Xu, Z. S.; Xie, W. K.; Zhou, J. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 2017, 10, 1923–1927.

8

Chang, C.; Nie, X.; Li, X. X.; Tao, P.; Fu, B. W.; Wang, Z. Y.; Xu, J. L.; Ye, Q. X.; Zhang, J. Y.; Song, C. Y. et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. J. Mater. Chem. A 2020, 8, 20970–20978.

9

Chen, R.; Wang, X.; Gan, Q. M.; Zhang, T. Q.; Zhu, K. H.; Ye, M. M. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection. J. Mater. Chem. A 2019, 7, 11177–11185.

10

Jorner, K.; Dreos, A.; Emanuelsson, R.; El Bakouri, O.; Galván, I. F.; Börjesson, K.; Feixas, F.; Lindh, R.; Zietz, B.; Moth-Poulsen, K. et al. Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. J. Mater. Chem. A 2017, 5, 12369–12378.

11

Xia, Y.; Li, Y.; Yuan, S.; Kang, Y.; Jian, M. P.; Hou, Q. F.; Gao, L.; Wang, H. T.; Zhang, X. W. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine. J. Mater. Chem. A 2020, 8, 16212–16217.

12

Cooper, T. A.; Zandavi, S. H.; Ni, G. W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S. V.; Chen, G. Contactless steam generation and superheating under one sun illumination. Nat. Commun 2018, 9, 5086.

13

Lu, Q. C.; Yang, Y.; Feng, J. R.; Wang, X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Solar RRL 2019, 3, 1800277.

14

Li, H. R.; He, Y. R.; Hu, Y. W.; Wang, X. Z. Commercially available activated carbon fiber felt enables efficient solar steam generation. ACS Appl. Mater. Interfaces 2018, 10, 9362–9368.

15

Ma, T. Y.; Yang, C. Y.; Guo, W.; Lin, H. M.; Zhang, F.; Liu, H. X.; Zhao, L.; Zhang, Y.; Wang, Y. Z.; Cui, Y. T. et al. Flexible Pt3Ni-S-deposited teflon membrane with high surface mechanical properties for efficient solar-driven strong acidic/alkaline water evaporation. ACS Appl. Mater. Interfaces 2020, 12, 27140–27149.

16

Traver, E.; Karaballi, R. A.; Monfared, Y. E.; Daurie, H.; Gagnon, G. A.; Dasog, M. TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Appl. Nano Mater. 2020, 3, 2787–2794.

17

Tian, S.; Huang, Z. M.; Tan, J. H.; Cui, X.; Xiao, Y. F.; Wan, Y. P.; Li, X. Z.; Zhao, Q.; Li, S. L.; Lee, C. S. Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification. ACS Energy Lett. 2020, 5, 2698–2705.

18

Utgenannt, A.; Maspero, R.; Fortini, A.; Turner, R.; Florescu, M.; Jeynes, C.; Kanaras, A. G.; Muskens, O. L.; Sear, R. P.; Keddie, J. L. Fast assembly of gold nanoparticles in large-area 2D nanogrids using a one-step, near-infrared radiation-assisted evaporation process. ACS Nano 2016, 10, 2232–2242.

19

Hao, D. D.; Yang, Y. D.; Xu, B.; Cai, Z. S. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation. ACS Sustainable Chem. Eng. 2018, 6, 10789–10797.

20

Meng, F. L.; Yilmaz, G.; Ding, T. P.; Gao, M. M.; Ho, G. W. A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis. Adv. Mater. 2019, 31, 1903605.

21

Gao, M. M.; Peh, C. K.; Phan, H. T.; Zhu, L. L.; Ho, G. W. Solar absorber gel: Localized macro-nano heat channeling for efficient plasmonic au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energy Mater. 2018, 8, 1800711.

22

Ding, T. P.; Liu, K.; Li, J.; Xue, G. B.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551.

23

Chen, G. L.; Zhang, N.; Li, N.; Yu, L. M.; Xu, X. F. A 3D hemispheric steam generator based on an organic–inorganic composite light absorber for efficient solar evaporation and desalination. Adv. Mater. Interfaces 2020, 7, 1901715.

24

Han, S. B.; Ruoko, T. P.; Gladisch, J.; Erlandsson, J.; Wågberg, L.; Crispin, X.; Fabiano, S. Cellulose-conducting polymer aerogels for efficient solar steam generation. Adv. Sustain. Syst. 2020, 4, 2000004.

25

Shi, L.; Shi, Y.; Zhuo, S. F.; Zhang, C. L.; Aldrees, Y.; Aleid, S.; Wang, P. Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-fenton reaction and solar-driven water evaporation. Nano Energy 2019, 60, 222–230.

26

Wang, Y. C.; Wang, C. Z.; Liang, W. Y.; Song, X. J.; Zhang, Y. J.; Huang, M. H.; Jiang, H. Q. Multifunctional perovskite oxide for efficient solar-driven evaporation and energy-saving regeneration. Nano Energy 2020, 70, 104538.

27

Zhang, P. P.; Liao, Q. H.; Zhang, T.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Li, C.; Jiang, L.; Qu, L. T. High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. Nano Energy 2018, 46, 415–422.

28

Tian, C.; Liu, J.; Ruan, R. F.; Tian, X. L.; Lai, X. Y.; Xing, L.; Su, Y. Q.; Huang, W.; Cao, Y.; Tu, J. C. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 2020, 16, 2000573.

29

Han, S.; Yang, J.; Li, X. F.; Li, W.; Zhang, X. T.; Koratkar, N.; Yu, Z. Z. Flame synthesis of superhydrophilic carbon nanotubes/Ni foam decorated with Fe2O3 nanoparticles for water purification via solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 13229–13238.

30

Wu, D. D.; Qu, D.; Jiang, W. S.; Chen, G.; An, L.; Zhuang, C. Q.; Sun, Z. C. Self-floating nanostructured Ni–NiOx/Ni foam for solar thermal water evaporation. J. Mater. Chem. A 2019, 7, 8485–8490.

31

Chen, X. D.; Meng, C.; Wang, Y.; Zhao, Q. Q.; Li, Y. J.; Chen, X. M.; Yang, D. W.; Li, Y. X.; Zhou, Y. Laser-synthesized rutile TiO2 with abundant oxygen vacancies for enhanced solar water evaporation. ACS Sustainable Chem. Eng. 2020, 8, 1095–1101.

32

Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

33

Zhao, F.; Guo, Y. H.; Zhou, X. Y.; Shi, W.; Yu, G. H. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401.

34

Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem. , Int. Ed. 2019, 58, 19041–19046.

35

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

36

Pang, Y. S.; Zhang, J. J.; Ma, R. M.; Qu, Z. G.; Lee, E.; Luo, T. F. Solar–thermal water evaporation: A review. ACS Energy Lett. 2020, 5, 437–456.

37

Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Luo, W.; Song, J. W.; Hitz, E.; Jia, C.; Zhou, Y. B.; Liu, B. Y. et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 2017, 29, 1700981.

38

Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B. et al. Mof-based hierarchical structures for solar-thermal clean water production. Adv. Mater. 2019, 31, 1808249.

39

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

40

Li, Q. B.; Xiao, Y. T.; Shi, X. Y.; Song, S. F. Rapid evaporation of water on graphene/graphene-oxide: A molecular dynamics study. Nanomaterials 2017, 7, 265.

41

Yin, J. L.; Xu, J.; Xu, W. B.; Liu, S.; Li, W. Q.; Fang, Z. G.; Lu, C. H.; Xu, Z. Z. Tuning the wettability of solar absorbers towards high-efficiency solar vapor generation. Appl. Therm. Eng. 2021, 183, 116224.

42

Wu, X.; Chen, G. Y.; Zhang, W.; Liu, X. K.; Xu, H. L. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 2017, 1, 1700046.

43

Feng, X. M.; Zhao, J. L.; Sun, D. W.; Shanmugam, L.; Kim, J. K.; Yang, J. L. Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination. J. Mater. Chem. A 2019, 7, 4400–4407.

44

Li, Y. L.; Zhao, M. Y.; Xu, Y. S.; Chen, L. L.; Jiang, T.; Jiang, W. C.; Yang, S. G.; Wang, Y. Manipulating light trapping and water vaporization enthalpy via porous hybrid nanohydrogels for enhanced solar-driven interfacial water evaporation with antibacterial ability. J. Mater. Chem. A 2019, 7, 26769–26775.

45

Yu, S. T.; Zhang, Y.; Duan, H. Z.; Liu, Y. M.; Quan, X. J.; Tao, P.; Shang, W.; Wu, J. B.; Song, C. Y.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci Rep 2015, 5, 13600.

46

He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

47

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol 2017, 12, 317–321.

48

Ma, N.; Fu, Q.; Hong, Y. X.; Hao, X. Y.; Wang, X. G.; Ju, J.; Sun, J. L. Processing natural wood into an efficient and durable solar steam generation device. ACS Appl. Mater. Interfaces 2020, 12, 18165–18173.

49

Ma, N.; Zhang, M. K.; Wang, X. S.; Zhang, L.; Feng, J.; Zhang, X. Z. Nir light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer. Adv. Funct. Mater. 2018, 28, 1801139.

50

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter 2002, 14, 2717–2744.

51

Burke, K.; Werschnik, J.; Gross, E. K. U. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys. 2005, 123, 062206.

52

Tancogne-Dejean, N.; Oliveira, M. J. T.; Andrade, X.; Appel, H.; Borca, C. H.; Le Breton, G.; Buchholz, F.; Castro, A.; Corni, S.; Correa, A. A. et al. Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J. Chem. Phys. 2020, 152, 124119.

53

Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen mechanik innerhalb der quantenmechanik. Z. Physik 1927, 45, 455–457.

54

Castro, A.; Marques, M. A. L.; Rubio, A. Propagators for the time-dependent kohn-sham equations. J. Chem. Phys. 2004, 121, 3425–3433.

55

Miyamoto, Y.; Zhang, H.; Cheng, X. L.; Rubio, A. Ab initio simulation of laser-induced water decomposition close to carbon nanotubes. Phys. Rev. B 2019, 99, 165424.

56

Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

57

Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S. R. et al. Synthesis, characterization, and application of carboxymethyl cellulose from asparagus stalk end. Polymers 2021, 13, 81.

58

Rachtanapun, P.; Rattanapanone, N. Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra. J. Appl. Polym. Sci. 2011, 122, 3218–3226.

59

Zhang, Q.; Li, L.; Jiang, B.; Zhang, H. T.; He, N.; Yang, S.; Tang, D. W.; Song, Y. C. Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 2020, 12, 28179–28187.

60

Ma, Q. L.; He, Q. Y.; Yin, P. F.; Cheng, H. F.; Cui, X. Y.; Yun, Q. B.; Zhang, H. Rational design of mof-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 2020, 32, 2003720.

61

Zimudzi, T. J.; Feldman, K. E.; Sturnfield, J. F.; Roy, A.; Hickner, M. A.; Stafford, C. M. Quantifying carboxylic acid concentration in model polyamide desalination membranes via fourier transform infrared spectroscopy. Macromolecules 2018, 51, 6623–6629.

62

Pedroza, L. S.; Brandimarte, P.; Rocha, A. R.; Fernández-Serra, M. V. Bias-dependent local structure of water molecules at a metallic interface. Chem. Sci. 2018, 9, 62–69.

63

Li, Q. Y.; Li, X.; Yang, S.; Gu, P. K.; Yang, G. Structure, dynamics, and stability of water molecules during interfacial interaction with clay minerals: Strong dependence on surface charges. ACS Omega 2019, 4, 5932–5936.

File
12274_2021_3631_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 March 2021
Revised: 26 May 2021
Accepted: 30 May 2021
Published: 13 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge funding from the National Natural Science Foundation of China (Nos. 21871009 and 21527803), the Youth Science Foundation of Hubei University (No. 202011303000002) and China Postdoctoral Science Foundation (No. 2018M641064).

Return