Journal Home > Volume 15 , Issue 2

Generating heterophase structures in nanomaterials, e.g., heterophase metal nanocrystals, is an effective way to tune their physicochemical properties because of their high-energy nature and unique electronic environment of the generated interfaces. However, the direct synthesis of heterophase metal nanocrystals remains a great challenge due to their unstable nature. Herein, we report the in situ and direct synthesis of heterophase Ni nanocrystals on graphene. The heterostructure of face-centered cubic (fcc) and hexagonal close-packed (hcp) phase was generated via the epitaxial growth of hcp Ni and the partial transformation of fcc Ni and stabilized by the anchoring effect of graphene toward fcc Ni nanocrystal and the preferential adsorption of surfactant polyethylenimine (PEI) toward epitaxial hcp Ni. Comparing with the fcc Ni nanocrystals grown on graphene, the heterophase (fcc/hcp) Ni nanocrystals in situ grown on graphene showed a greatly improved catalytic activity and reusability in 4-nitrophenol (4-NP) reduction to 4-aminophenol (4-AP). The measured apparent rate constant and the activity parameter were 2.958 min–1 and 102 min–1·mg–1, respectively, higher than that of the best reported non-noble metal catalysts and most noble metal catalysts. The control experiments and density functional theory calculations reveal that the interface of the fcc and hcp phases enhances the adsorption of substrate 4-NP and thus facilitates the reaction kinetics. This work proves the novel idea for the rational design of heterophase metal nanocrystals by employing the synergistic effect of surfactant and support, and also the potential of creating the heterostructure for enhancing their catalytic reactivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ growth of heterophase Ni nanocrystals on graphene for enhanced catalytic reduction of 4-nitrophenol

Show Author's information Jiahao Zhuang1,2,§Feng He3,§Xianglin Liu4Pengchao Si1,2Fangna Gu2( )Jing Xu4Yu Wang2Guangwen Xu3Ziyi Zhong5,6( )Fabing Su2,3( )
School of Chemical Engineering University of Chinese Academy of SciencesBeijing 100049 China
State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of SciencesBeijing 100190 China
Key Laboratory on Resources Chemicals and Materials of Ministry of Education Shenyang University of Chemical TechnologyShenyang 110142 China
State Key Laboratory of Chemical Engineering School of Chemical EngineeringEast China University of Science and TechnologyShanghai 200237 China
Department of Chemical Engineering Guangdong Technion-Israel Institute of Technology (GTIIT)Shantou 515063 China
Technion-Israel Institute of Technology (IIT)Haifa 32000 Israel

§ Jiahao Zhuang and Feng He contributed equally to this work.

Abstract

Generating heterophase structures in nanomaterials, e.g., heterophase metal nanocrystals, is an effective way to tune their physicochemical properties because of their high-energy nature and unique electronic environment of the generated interfaces. However, the direct synthesis of heterophase metal nanocrystals remains a great challenge due to their unstable nature. Herein, we report the in situ and direct synthesis of heterophase Ni nanocrystals on graphene. The heterostructure of face-centered cubic (fcc) and hexagonal close-packed (hcp) phase was generated via the epitaxial growth of hcp Ni and the partial transformation of fcc Ni and stabilized by the anchoring effect of graphene toward fcc Ni nanocrystal and the preferential adsorption of surfactant polyethylenimine (PEI) toward epitaxial hcp Ni. Comparing with the fcc Ni nanocrystals grown on graphene, the heterophase (fcc/hcp) Ni nanocrystals in situ grown on graphene showed a greatly improved catalytic activity and reusability in 4-nitrophenol (4-NP) reduction to 4-aminophenol (4-AP). The measured apparent rate constant and the activity parameter were 2.958 min–1 and 102 min–1·mg–1, respectively, higher than that of the best reported non-noble metal catalysts and most noble metal catalysts. The control experiments and density functional theory calculations reveal that the interface of the fcc and hcp phases enhances the adsorption of substrate 4-NP and thus facilitates the reaction kinetics. This work proves the novel idea for the rational design of heterophase metal nanocrystals by employing the synergistic effect of surfactant and support, and also the potential of creating the heterostructure for enhancing their catalytic reactivity.

Keywords: graphene, catalysts, Ni nanocrystals, heterophase structure, 4-nitrophenol (4-NP) reduction

References(51)

1

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

2

Zhao, M.; Xia, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Chem. 2020, 5, 440–459.

3

Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 2016, 49, 2841–2850.

4

Liu, J. X.; Li, W. X. Theoretical study of crystal phase effect in heterogeneous catalysis. WIREs Comput. Mol. Sci. 2016, 6, 571–583.

5

Liu, S.; Li, Y.; Shen, W. J. Tuning the catalytic behavior of metal nanoparticles: The issue of the crystal phase. Chin. J. Catal. 2015, 36, 1409–1418.

6

Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, e1707189.

7

Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in Ⅲ-Ⅴ nanowires. Nat. Nanotechnol. 2009, 4, 50–55.

8

Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

9

Gong, M. G.; Kirkeminde, A.; Wuttig, M.; Ren, S. Q. Phase transformation-induced tetragonal FeCo nanostructures. Nano Lett. 2014, 14, 6493–6498.

10

Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 2018, 9, 510.

11

Ye, H. H.; Wang, Q. X.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y. Z.; Sun, Y. G.; Xia, X. H. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 2016, 16, 2812–2817.

12

Alyami, N. M.; LaGrow, A. P.; Anjum, D. H.; Guan, C.; Miao, X. H.; Sinatra, L.; Yuan, D. J.; Mohammed, O. F.; Huang, K. W.; Bakr, O. M. Synthesis and characterization of branched fcc/hcp ruthenium nanostructures and their catalytic activity in ammonia borane hydrolysis. Cryst. Growth Des. 2018, 18, 1509–1516.

13

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

14

Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.

15

Liu, J.; Zhang, J. T. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 2020, 120, 2123–2170.

16

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. , Int. Ed. 2017, 56, 60–95.

17

Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

18

Wu, H. C.; Kumar, A.; Wang, J.; Bi, X. F.; Tomé, C. N.; Zhang, Z.; Mao, S. X. Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature. Sci. Rep. 2016, 6, 24370.

19

Ge, Y. Y.; Huang, Z. Q.; Ling, C. Y.; Chen, B.; Liu, G. G.; Zhou, M.; Liu, J. W.; Zhang, X.; Cheng, H. F.; Liu, G. H. et al. Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles. J. Am. Chem. Soc. 2020, 142, 18971–18980.

20

Tan, X. Y.; Geng, S. Z.; Ji, Y. J.; Shao, Q.; Zhu, T.; Wang, P. T.; Li, Y. Y.; Huang, X. Q. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Adv. Mater. 2020, 32, 2002857.

21

Chen, Q. L.; Cheng, T. C.; Fu, H. Y.; Zhu, Y. H. Crystal phase regulation in noble metal nanocrystals. Chin. J. Catal. 2019, 40, 1035–1056.

22

Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332–2339.

23

Shang, J. Q.; Xue, F.; Ding, E. Y. The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chem. Commun. 2015, 51, 15811–15814.

24

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

25

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

26

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

27

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

28

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

29

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-Zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

30

Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-Zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

31

Liu, J. X.; Zhang, B. Y.; Chen, P. P.; Su, H. Y.; Li, W. X. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study. J. Phys. Chem. C 2016, 120, 24895–24903.

32

Chen, L. F.; Leong, G. J.; Schulze, M.; Dinh, H. N.; Pivovar, B.; Hu, J. C.; Qi, Z. W.; Fang, Y. J.; Prikhodko, S.; Pozuelo, M. et al. Controlled synthesis of nanoscale icosahedral gold particles at room temperature. ChemCatChem 2012, 4, 1662–1667.

33

LaGrow, A. P.; Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Jefferson, D. A.; Tilley, R. D. Can polymorphism be used to form branched metal nanostructures? Adv. Mater. 2013, 25, 1552–1556.

34

Bauer, R.; Jägle, E. A.; Baumann, W.; Mittemeijer, E. J. Kinetics of the allotropic hcp–fcc phase transformation in cobalt. Philos. Mag. 2011, 91, 437–457.

35

Johansson, J.; Karlsson, L. S.; Svensson, C. P.; Mårtensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W. Structural properties of < 111 > B-oriented Ⅲ-Ⅴ nanowires. Nat. Mater. 2006, 5, 574–580.

DOI
36

Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

37

Du, Z. K.; Wang, Y. L.; Li, J. S.; Liu, J. P. Facile fabrication of Pt–Ni alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment. J. Nanopart. Res. 2019, 21, 13.

38

Liu, H.; Zhang, M. M.; Ma, T. J.; Wang, Y. Ni and NiO in situ grown on sulfur and phosphorus co-doped graphene as effective bifunctional catalyst for hydrogen evolution. J. Electroanal. Chem. 2019, 848, 113306.

39

Zhuang, J. H.; Liu, X. L.; Ji, Y. J.; Gu, F. N.; Xu, J.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. J. Mater. Chem. A 2020, 8, 22143–22154.

40

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

41

Liao, G. F.; Gong, Y.; Zhong, L.; Fang, J. S.; Zhang, L.; Xu, Z. S.; Gao, H. Y.; Fang, B. Z. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 2019, 12, 2407–2436.

42

Liu, J. Y.; Yu, H. J.; Wang, L. Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets. Appl. Catal. A Gen. 2020, 599, 117605.

43

Das, R.; Sypu, V. S.; Paumo, H. K.; Bhaumik, M.; Maharaj, V.; Maity, A. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/ Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 2019, 244, 546–558.

44

Yang, Y.; Zeng, D. H.; Shao, S.; Hao, S. J.; Zhu, G. L.; Liu, B. J. Construction of core-shell mesoporous carbon nanofiber@nickel cobaltite nanostructures as highly efficient catalysts towards 4-nitrophenol reduction. J. Colloid Interface Sci. 2019, 538, 377–386.

45

Bai, S.; Shen, X. P.; Zhu, G. X.; Li, M. Z.; Xi, H. T.; Chen, K. M. In situ growth of NixCo100–x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl. Mater. Interfaces 2012, 4, 2378–2386.

46

Shi, Y.; Zhang, X. L.; Zhu, Y. M.; Tan, H. L.; Chen, X. S.; Lu, Z. H. Core–shell structured nanocomposites Ag@CeO2 as catalysts for hydrogenation of 4-nitrophenol and 2-nitroaniline. RSC Adv. 2016, 6, 47966–47973.

47

Kumar, M.; Deka, S. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions. ACS Appl. Mater. Interfaces 2014, 6, 16071–16081.

48

Yue, Q.; Li, J. L.; Zhang, Y.; Cheng, X. W.; Chen, X.; Pan, P. P.; Su, J. C.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 2017, 139, 15486–15493.

49

Jiang, Y. F.; Yuan, C. Z.; Xie, X.; Zhou, X.; Jiang, N.; Wang, X.; Imran, M.; Xu, A. W. A novel magnetically recoverable Ni-CeO2–x/Pd nanocatalyst with superior catalytic performance for hydrogenation of styrene and 4-nitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 9756–9762.

50

Goswami, S.; Noh, H.; Redfern, L. R.; Otake, K. I.; Kung, C. W.; Cui, Y. X.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. Pore-templated growth of catalytically active gold nanoparticles within a metal-organic framework. Chem. Mater. 2019, 31, 1485–1490.

51

Li, X. L.; Ma, Y. J.; Yang, Z.; Huang, D.; Xu, S. S.; Wang, T.; Su, Y. J.; Hu, N. T.; Zhang, Y. F. In situ preparation of magnetic Ni-Au/ graphene nanocomposites with electron-enhanced catalytic performance. J. Alloys Compd. 2017, 706, 377–386.

File
12274_2021_3630_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 March 2021
Revised: 12 May 2021
Accepted: 30 May 2021
Published: 09 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 21776286). Z. Zhong also thanks the support of the Guangdong Key Discipline Fund for this research.

Return