Journal Home > Volume 15 , Issue 2

Formic acid oxidation (FAO) is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways. Herein, PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes (CoNC NFs) were designed to improve the selectivity of the direct reaction pathway for efficient FAO. Based on these subtle nanomaterials, the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail. The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO, which is crucial for enhancing the oxidation efficiency of formic acid. In particular, the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1 (PtAu/CoNC-3) manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts. The FAO mass activity of the PtAu/CoNC-3 sample reached 0.88 A·mgPt−1, which is 26.0 times higher than that of Pt/C. The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C, which indicates that the synergistic effect of Pt, Au, and CoNC NFs is critical for the resistance of Pt to CO poisoning. This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Modulating reaction pathways of formic acid oxidation for optimized electrocatalytic performance of PtAu/CoNC

Show Author's information Mengchao Liang1,§Tianyu Xia1,§( )Han Gao1Kai Zhao1Tianqi Cao1Meng Deng1Xiaoyan Ren1Shunfang Li1Haizhong Guo1,2( )Rongming Wang3( )
Key Laboratory of Material Physics, Ministry of Education School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou 450052 China
Collaborative Innovation Center of Light Manipulations and Applications Shandong Normal UniversityJinanShandong 250358 China
Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceSchool of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing 100083 China

§ Mengchao Liang and Tianyu Xia contributed equally to this work.

Abstract

Formic acid oxidation (FAO) is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways. Herein, PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes (CoNC NFs) were designed to improve the selectivity of the direct reaction pathway for efficient FAO. Based on these subtle nanomaterials, the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail. The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO, which is crucial for enhancing the oxidation efficiency of formic acid. In particular, the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1 (PtAu/CoNC-3) manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts. The FAO mass activity of the PtAu/CoNC-3 sample reached 0.88 A·mgPt−1, which is 26.0 times higher than that of Pt/C. The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C, which indicates that the synergistic effect of Pt, Au, and CoNC NFs is critical for the resistance of Pt to CO poisoning. This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.

Keywords: co-doping, formic acid oxidation, metal organic framework, direct oxidation pathway, CO binding energy

References(54)

1

Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.

2

Rejal, S. Z.; Masdar, M. S.; Kamarudin, S. K. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int. J. Hydrogen Energy 2014, 39, 10267–10274.

3

Jiang, X.; Xiong, Y. X.; Wang, Y. F.; Wang, J. X.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M.; Tang, Y. W. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis. J. Mater. Chem. A 2019, 7, 5248–5257.

4

Li, F. H.; Guo, Y. Q.; Liu, Y.; Qiu, H. X.; Sun, X. Y.; Wang, W.; Liu, Y.; Gao, J. P. Fabrication of Pt–Cu/RGO hybrids and their electrochemical performance for the oxidation of methanol and formic acid in acid media. Carbon 2013, 64, 11–19.

5

Goswami, C.; Saikia, H.; Tada, K.; Tanaka, S.; Sudarsanam, P.; Bhargava, S. K.; Bharali, P. Bimetallic palladium–nickel nanoparticles anchored on carbon as high-performance electrocatalysts for oxygen reduction and formic acid oxidation reactions. ACS Appl. Energy Mater. 2020, 3, 9285–9295.

6

Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.

7

Betts, A.; Briega-Martos, V.; Cuesta, A.; Herrero, E. Adsorbed formate is the last common intermediate in the dual-path mechanism of the electrooxidation of formic acid. ACS Catal. 2020, 10, 8120–8130.

8

Calderón-Cárdenas, A.; Hartl, F. W.; Gallas, J. A. C.; Varela, H. Modeling the triple-path electro-oxidation of formic acid on platinum: Cyclic voltammetry and oscillations. Catal. Today 2021, 359, 90–98.

9

Wang, Y.; Jiang, X.; Fu, G. T.; Li, Y. H.; Tang, Y. D.; Lee, J. M.; Tang, Y. W. Cu5Pt dodecahedra with low-Pt content: Facile synthesis and outstanding formic acid electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 34869–34877.

10

Krstajić Pajić, M. N.; Stevanović, S. I.; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Zabinski, P.; Elezović, N. R.; Radmilović, V. R.; Gojković, S. L.; Jovanović, V. M. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B Environ. 2019, 243, 585–593.

11

Guo, L. M.; Zhang, D. F.; Guo, L. Structure design reveals the role of Au for ORR catalytic performance optimization in PtCo-based catalysts. Adv. Funct. Mater. 2020, 30, 2001575.

12

Zhang, Q. Q.; Liu, J. L.; Xia, T. Y.; Qi, J.; Lyu, H. C.; Luo, B. Y.; Wang, R. M.; Guo, Y. Z.; Wang, L. H.; Wang, S. G. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Res. 2019, 12, 2520–2527.

13

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/ crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

14

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

15

Zhang, S.; Shao, Y. Y.; Liao, H. G.; Liu, J.; Aksay, I. A.; Yin, G. P.; Lin, Y. H. Graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem. Mater. 2011, 23, 1079–1081.

16

Cappellari, P. S.; García, G.; Florez-Montaño, J.; Barbero, C. A.; Pastor, E.; Planes, G. A. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies. J. Power Sources 2015, 296, 290–297.

17

Kim, S. H.; Jeong, H.; Kim, J.; Lee, I. S. Fabrication of supported AuPt alloy nanocrystals with enhanced electrocatalytic activity for formic acid oxidation through conversion chemistry of layer-deposited Pt2+ on au nanocrystals. Small 2015, 11, 4884–4893.

18

Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

19

Li, D. W.; Meng, F. H.; Wang, H.; Jiang, X. J.; Zhu, Y. Nanoporous aupt alloy with low Pt content: A remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochim. Acta 2016, 190, 852–861.

20

Fan, H. S.; Cheng, M.; Wang, L.; Song, Y. J.; Cui, Y. M.; Wang, R. M. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1–9.

21

Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.

22

Lv, Y. H.; Li, X. W. PtCo/N-doped carbon sheets derived from a simple pyrolysis of graphene oxide/ZIF-67/H2PtCl6 composites as an efficient catalyst for methanol electro-oxidation. Int. J. Hydrogen Energy 2020, 45, 12766–12776.

23

Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

24

Ren, W. N.; Zang, W. J.; Zhang, H. F.; Bian, J. L.; Chen, Z. F.; Guan, C.; Cheng, C. W. PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis. Carbon 2019, 142, 206–216.

25

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev B 1996, 54, 11169–11186.

26

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

27

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Zhu, J. Y.; Qu, T.; Su, F. M.; Wu, Y. Q.; Kang, Y.; Chen, K. F.; Yao, Y. C.; Ma, W. H.; Yang, B.; Dai, Y. N. et al. Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na–air battery. Dalton Trans. 2020, 49, 1811–1821.

30

Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.

31

Gao, D. W.; Li, S.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt−Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res. 2018, 11, 2612–2624.

32

Peng, Y.; Li, L. D.; Tao, R.; Tan, L. Y.; Qiu, M. N.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222–3232.

33

Li, F. M.; Ding, Y.; Xiao, X.; Yin, S. B.; Hu, M. C.; Li, S.; Chen, Y. From monometallic Au nanowires to trimetallic AuPtRh nanowires: Interface control for the formic acid electrooxidation. J. Mater. Chem. A 2018, 6, 17164–17170.

34

Zhang, L. J.; Su, Z. X.; Jiang, F. L.; Yang, L. L.; Qian, J. J.; Zhou, Y. F.; Li, W. M.; Hong, M. C. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602.

35

Sahu, S. C.; Samantara, A. K.; Dash, A.; Juluri, R. R.; Sahu, R. K.; Mishra, B. K.; Jena, B. K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst. Nano Res. 2013, 6, 635–643.

36

Zhang, D.; Ye, K.; Yao, Y. C.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y. N.; Watanabe, T. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 2019, 142, 278–284.

37

Li, G. N.; Zheng, K. T.; Li, W. S.; He, Y. C.; Xu, C. J. Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting. ACS Appl. Mater. Interfaces 2020, 12, 51437–51447.

38

Zhao, Q.; Liu, Q. L.; Zheng, Y. F.; Han, R.; Song, C. F.; Ji, N.; Ma, D. G. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire. Chemosphere 2020, 244, 125532.

39

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

40

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

41

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

42

Xu, K. X.; Xia, T. Y.; Zhou, L.; Li, S. F.; Cai, B.; Wang, R. M.; Guo, H. Z. Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni nanoparticles. Acta Phys. Sin. 2020, 69, 076101.

43

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

44

Lee, H. I.; Joo, S. H.; Kim, J. H.; You, D. J.; Kim, J. M.; Park, J. N.; Chang, H.; Pak, C. Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction. J. Mater. Chem. 2009, 19, 5934–5939.

45

Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

46

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

47

Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/c nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. , Int. Ed. 2021, 60, 6533–6538.

48

An, L.; Yan, H. J.; Li, B.; Ma, J.; Wei, H.; Xia, D. G. Highly active N–PtTe/reduced graphene oxide intermetallic catalyst for formic acid oxidation. Nano Energy 2015, 15, 24–32.

49

Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.

50

Zhang, Q.; Yao, Z. Q.; Zhou, R.; Du, Y. H.; Yang, P. Fabrication of Ag/Au/Pt composite catalysts and their electrocatalytic oxidation for formic acid. Acta Chim. Sin. 2012, 70, 2149–2154.

51

Yang, S.; Lee, H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 2013, 3, 437–443.

52

Kim, Y.; Kim, H. J.; Kim, Y. S.; Choi, S. M.; Seo, M. H.; Kim, W. B. Shape- and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation. J Phys Chem C 2012, 116, 18093–18100.

53

Lim, K. H.; Chen, Z. X.; Neyman, K. M.; Rösch, N. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. J. Phys. Chem. B 2006, 110, 14890–14897.

54

Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

File
12274_2021_3629_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2021
Revised: 18 May 2021
Accepted: 30 May 2021
Published: 01 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

Thanks for the financial support from the National Natural Science Foundation of China (Nos. 51801188, 12034002, and 51971025), the China Postdoctoral Science Foundation (No. 2018M632792), program for the Innovation Team of Science and Technology in University of Henan (No. 20IRTSTHN014), Excellent Youth Foundation of He'nan Scientific Committee (No. 202300410356), the CAS Interdisciplinary Innovation Team (No. JCTD-2019-01), and Beijing Natural Science Foundation (No. 2204085). The Center of Advanced Analysis & Gene Sequencing of Zhengzhou University is acknowledged for providing characterization facilities. Shanghai Synchrotron Radiation Facility (SSRF) is acknowledged for providing X-ray absorption near edge structure (XANES) test at the BL11B beamline.

Return