Journal Home > Volume 14 , Issue 11

Due to better penetrating abilities of near-infrared (NIR) light and lower autofluorescence of biological tissue at NIR region, the combination of NIR fluorescent imaging with therapeutic abilities has gradually emerged as a promising strategy for cancer therapy. Herein, tumor microenvironment (TME) sensitive nanocarriers based on doxorubicin hydrochloride (DOX), NIR emitting carbon dots (C-dots), hollow mesoporous silica nanoparticles (HMSN) and anionic polymer citraconic anhydride-modified polylysine (PLL(cit)) are fabricated for imaging guided drug delivery. The NIR emitting C-dots were conjugated onto the surface of HMSN via disulfide bonds which can be reduced by intracellular glutathione (GSH) and result in the release of DOX into cells. And then the PLL(cit) was grafted on the surface of the nanocarriers to endow the nanocarriers with charge convertible property in mildly acidic TME (pH = 6.50) which results in prolonged blood circulation time and enhanced cellular internalization. The in vitro and in vivo experiments confirmed that the dual pH/GSH responsive features of nanocarriers can eliminate the tumor tissues effectively and elicit much slighter side effects. Moreover, since the fluorescence of C-dots can be recovered after the reduction of disulfide bonds and selectively accumulation of nanocarriers around tumor tissue, the DOX@HMSN-SS-C-dots-PLL(cit) can be served as a promising NIR fluorescence probe for targeted imaging of tumor tissue. As a kind of multifunctional nanocarrier with NIR fluorescent imaging and therapeutic functions, the theranostic nanocarriers hold great potential for tumor therapy and in vivo imaging of tumor tissue.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery

Show Author's information Zhongyin Chen1,§Tao Liao1,§Lihui Wan1Ying Kuang2Chang Liu1Junlin Duan1Xiangyu Xu1Ziqiang Xu1( )Bingbing Jiang1Cao Li1( )
Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Hubei University Wuhan 430062 China
Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China

§ Zhongyin Chen and Tao Liao contributed equally to this work.

Abstract

Due to better penetrating abilities of near-infrared (NIR) light and lower autofluorescence of biological tissue at NIR region, the combination of NIR fluorescent imaging with therapeutic abilities has gradually emerged as a promising strategy for cancer therapy. Herein, tumor microenvironment (TME) sensitive nanocarriers based on doxorubicin hydrochloride (DOX), NIR emitting carbon dots (C-dots), hollow mesoporous silica nanoparticles (HMSN) and anionic polymer citraconic anhydride-modified polylysine (PLL(cit)) are fabricated for imaging guided drug delivery. The NIR emitting C-dots were conjugated onto the surface of HMSN via disulfide bonds which can be reduced by intracellular glutathione (GSH) and result in the release of DOX into cells. And then the PLL(cit) was grafted on the surface of the nanocarriers to endow the nanocarriers with charge convertible property in mildly acidic TME (pH = 6.50) which results in prolonged blood circulation time and enhanced cellular internalization. The in vitro and in vivo experiments confirmed that the dual pH/GSH responsive features of nanocarriers can eliminate the tumor tissues effectively and elicit much slighter side effects. Moreover, since the fluorescence of C-dots can be recovered after the reduction of disulfide bonds and selectively accumulation of nanocarriers around tumor tissue, the DOX@HMSN-SS-C-dots-PLL(cit) can be served as a promising NIR fluorescence probe for targeted imaging of tumor tissue. As a kind of multifunctional nanocarrier with NIR fluorescent imaging and therapeutic functions, the theranostic nanocarriers hold great potential for tumor therapy and in vivo imaging of tumor tissue.

Keywords: charge-reversal, hollow mesoporous silica nanoparticles, near-infrared emissive carbon dots, dual-stimuli responsive

References(52)

1

Liu, H. W.; Chen, L. L.; Xu, C. Y.; Li, Z.; Zhang, H. Y.; Zhang, X. B.; Tan, W. H. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018, 47, 7140–7180.

2

Mou, C. Y.; Yang, Y.; Bai, Y.; Yuan, P.; Wang, Y. W.; Zhang, L. K. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J. Mater. Chem. B 2019, 7, 1246–1257.

3

Deng, X. R.; Liang, S.; Cai, X. C.; Huang, S. S.; Cheng, Z. Y.; Shi, Y. S.; Pang, M. L.; Ma, P. A.; Lin, J. Yolk-shell structured au nanostar@metal-organic framework for synergistic chemo-photothermal therapy in the second near-infrared window. Nano Lett. 2019, 19, 6772–6780.

4

Wei, R. X.; Gong, X. Q.; Lin, H. Y.; Zhang, K.; Li, A.; Liu, K.; Shan, H.; Chen, X. Y.; Gao, J. H. Versatile octapod-shaped hollow porous manganese(ii) oxide nanoplatform for real-time visualization of cargo delivery. Nano Lett. 2019, 19, 5394–5402.

5

Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

6

Wang, M. L.; Yang, Q. M.; Li, M.; Zou, H. M.; Wang, Z. G.; Ran, H. T.; Zheng, Y. Y.; Jian, J.; Zhou, Y.; Luo, Y. D. et al. Multifunctional nanoparticles for multimodal imaging-guided low-intensity focused ultrasound/immunosynergistic retinoblastoma therapy. ACS Appl. Mater. Interfaces 2020, 12, 5642–5657.

7

Liu, Z. W.; Song, F. L.; Shi, W. B.; Gurzadyan, G.; Yin, H. Y.; Song, B.; Liang, R.; Peng, X. J. Nitroreductase-activatable theranostic molecules with high pdt efficiency under mild hypoxia based on a TADF fluorescein derivative. ACS Appl. Mater. Interfaces 2019, 11, 15426–15435.

8

Miranda, D.; Carter, K.; Luo, D. D.; Shao, S.; Geng, J. M.; Li, C. N.; Chitgupi, U.; Turowski, S. G.; Li, N. S.; Atilla-Gokcumen, G. E. et al. Multifunctional liposomes for image-guided intratumoral chemo- phototherapy. Adv. Healthc. Mater. 2017, 6, 1700253.

9

Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

10

Chen, T.; Su, L. C.; Ge, X. G.; Zhang, W. M.; Li, Q. Q.; Zhang, X.; Ye, J. M.; Lin, L. S.; Song, J. B.; Yang, H. H. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo- radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020, 13, 3268–3277.

11

Zhang, L.; Yang, Z.; Ren, J. H.; Ba, L.; He, W. S.; Wong, C. Y. Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/photothermal therapy. Nano Res. 2020, 13, 1389–1398.

12

Xu, L.; Zhao, Y. L.; Owusu, K. A.; Zhuang, Z. C.; Liu, Q.; Wang, Z. Y.; Li, Z. H.; Mai, L. Q. Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology. Chem 2018, 4, 1538–1559.

13

Liu, C. H.; Zheng, J.; Deng, L.; Ma, C.; Li, J. S.; Li, Y. H.; Yang, S.; Yang, J. F.; Wang, J.; Yang, R. H. Targeted intracellular controlled drug delivery and tumor therapy through in situ forming ag nanogates on mesoporous silica nanocontainers. ACS Appl. Mater. Interfaces 2015, 7, 11930–11938.

14

Zhang, L.; Ji, X. Y.; Su, Y. Y.; Zhai, X.; Xu, H.; Song, B.; Jiang, A. R.; Guo, D. X.; He, Y. Fluorescent silicon nanoparticles-based nanotheranostic agents for rapid diagnosis and treatment of bacteria-induced keratitis. Nano Res. 2021, 14, 52–58.

15

Lu, H. W.; Xu, Y. J.; Qiao, R. R.; Lu, Z. W.; Wang, P.; Zhang, X. D.; Chen, A.; Zou, L. M.; Wang, Z. L. A novel clustered spio nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy. Nano Res. 2020, 13, 2216–2225.

16

Tang, W.; Fan, W. P.; Wang, Z. T.; Zhang, W. Z.; Zhou, S. Y.; Liu, Y. J.; Yang, Z.; Shao, E.; Zhang, G. F.; Jacobson, O. et al. Acidity/ reducibility dual-responsive hollow mesoporous organosilica nano­platforms for tumor-specific self-assembly and synergistic therapy. ACS Nano 2018, 12, 12269–12283.

17

Blum, N. T.; Yildirim, A.; Gyorkos, C.; Shi, D.; Cai, A.; Chattaraj, R.; Goodwin, A. P. Temperature-responsive hydrophobic silica nanoparticle ultrasound contrast agents directed by phospholipid phase behavior. ACS Appl. Mater. Interfaces 2019, 11, 15233–15240.

18

Chen, W.; Cheng, C. A.; Cosco, E. D.; Ramakrishnan, S.; Lingg, J. G. P.; Bruns, O. T.; Zink, J. I.; Sletten, E. M. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J. Am. Chem. Soc. 2019, 141, 12475–12480.

19

Gu, T. X.; Chen, T.; Cheng, L.; Li, X.; Han, G. R.; Liu, Z. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Res. 2020, 13, 2209–2215.

20

Chen, F.; Hong, H.; Goel, S.; Graves, S. A.; Orbay, H.; Ehlerding, E. B.; Shi, S. X.; Theuer, C. P.; Nickles, R. J.; Cai, W. B. In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano 2015, 9, 3926–3934.

21

Yu, L. D.; Chen, Y.; Wu, M. Y.; Cai, X. J.; Yao, H. L.; Zhang, L. L.; Chen, H. R.; Shi, J. L. "Manganese extraction" strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles. J. Am. Chem. Soc. 2016, 138, 9881–9894.

22

Lu, N.; Fan, W. P.; Yi, X.; Wang, S.; Wang, Z. T.; Tian, R.; Jacobson, O.; Liu, Y. J.; Yung, B. C.; Zhang, G. F. et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia- induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano 2018, 12, 1580–1591.

23

Sun, C. X.; Li, B. H.; Zhao, M. Y.; Wang, S. F.; Lei, Z. H.; Lu, L. F.; Zhang, H. X.; Feng, L. S.; Dou, C. R.; Yin, D. R. et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1, 500 nm. J. Am. Chem. Soc. 2019, 141, 19221–19225.

24

Xu, G.; Yan, Q. L.; Lv, X. G.; Zhu, Y.; Xin, K.; Shi, B.; Wang, R. C.; Chen, J.; Gao, W.; Shi, P. et al. Imaging of colorectal cancers using activatable nanoprobes with second near-infrared window emission. Angew. Chem. , Int. Ed. 2018, 57, 3626–3630.

25

Liu, L.; Wang, S. F.; Zhao, B. Z.; Pei, P.; Fan, Y.; Li, X. M.; Zhang, F. Er3+ sensitized 1, 530 nm to 1, 180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem. , Int. Ed. 2018, 57, 7518–7522.

26

Peng, X. Y.; Wang, R.; Wang, T. J.; Yang, W. N.; Wang, H.; Gu, W.; Ye, L. Carbon dots/prussian blue satellite/core nanocomposites for optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 1084–1092.

27

Lyu, Y.; He, S. S.; Li, J. C.; Jiang, Y. Y.; Sun, H.; Miao, Y. S.; Pu, K. Y. A photolabile semiconducting polymer nanotransducer for near-infrared regulation of CRISPR/Cas9 gene editing. Angew. Chem. , Int. Ed. 2019, 58, 18197–18201.

28

Li, J. C.; Duan, H. W.; Pu, K. Y. Nanotransducers for near-infrared photoregulation in biomedicine. Adv. Mater. 2019, 31, 1901607.

29

He, K.; Zhu, J. Y.; Gong, L. S.; Tan, Y.; Chen, H. R.; Liang, H. R.; Huang, B. H.; Liu, J. B. In situ self-assembly of near-infrared- emitting gold nanoparticles into body-clearable 1d nanostructures with rapid lysosome escape and fast cellular excretion. Nano Res. 2021, 14, 1087–1094.

30

Pan, L. L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. W. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 2016, 8, 17350–17356.

31

Zhou, B.; Guo, Z. X.; Lin, Z. X.; Zhang, L. Z.; Jiang, B. P.; Shen, X. C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg. Chem. Front. 2019, 6, 1116–1128.

32

Xu, Z. Q.; Liu, Y. The behavior of carbonized polymer dots at the nano-bio interface and their luminescent mechanism: A physical chemistry perspective. Chin. J. Chem. 2021, 39, 265–273.

33
Sun, Z. H.; Yan, F. Y.; Xu, J.; Zhang, H.; Chen, L. Solvent- controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices. Nano Res., in press, https://doi.org/10.1007/s12274-021-3495-8.
DOI
34

Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X.; Zhuang, X. L.; Chen, X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.

35

Liu, J. J.; Liang, H. N.; Li, M. H.; Luo, Z.; Zhang, J. X.; Guo, X. M.; Cai, K. Y. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018, 157, 107–124.

36

Liu, Y. J.; Guo, X. Y.; Yang, S. H.; He, G. X.; Jin, H. B. Controllable preparation of uniform micron-sized barium-sulfate spheres. Cryst. Res. Technol. 2018, 53, 1700212.

37

Wan, L. H.; Chen, Z. Y.; Deng, Y.; Liao, T.; Kuang, Y.; Liu, J.; Duan, J. L.; Xu, Z. Q.; Jiang, B. B.; Li, C. A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy. J. Colloid Interface Sci. 2020, 573, 263–277.

38

Chen, Z. Y.; Wan, L. H.; Yuan, Y.; Kuang, Y.; Xu, X. Y.; Liao, T.; Liu, J.; Xu, Z. Q.; Jiang, B. B.; Li, C. pH/GSH-dual-sensitive hollow mesoporous silica nanoparticle-based drug delivery system for targeted cancer therapy. ACS Biomater. Sci. Eng. 2020, 6, 3375–3387.

39

Xu, C.; Chen, F.; Valdovinos, H. F.; Jiang, D. W.; Goel, S.; Yu, B.; Sun, H. Y.; Barnhart, T. E.; Moon, J. J.; Cai, W. B. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 2018, 165, 56–65.

40

Chen, X.; Liu, Y. N.; Lin, A. G.; Huang, N.; Long, L. Q.; Gang, Y.; Liu, J. Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with Amp for an enhanced effect against anti-drug-resistant bacteria by overcoming efflux pump systems. Biomater. Sci. 2018, 6, 1923–1935.

41

Luo, Z.; Hu, Y.; Cai, K. Y.; Ding, X. W.; Zhang, Q.; Li, M. H.; Ma, X.; Zhang, B. L.; Zeng, Y. F.; Li, P. Z. et al. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 2014, 35, 7951–7962.

42

Sun, T. T.; Zheng, M.; Xie, Z. G.; Jing, X. B. Supramolecular hybrids of carbon dots with doxorubicin: Synthesis, stability and cellular trafficking. Mater. Chem. Front. 2017, 1, 354–360.

43

Hou, L.; Chen, D. D.; Wang, R. T.; Wang, R. B.; Zhang, H. J.; Zhang, Z. Z.; Nie, Z. H.; Lu, S. Y. Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite delivery and enhanced antitumor chemoimmunotherapy. Angew. Chem., Int. Ed. 2020, 60, 6581–6592.

44

Zhang, S. Y.; Xiao, C. Q.; He, H.; Xu, Z. Q.; Wang, B. B.; Chen, X. Q.; Li, C.; Jiang, B. B.; Liu, Y. The adsorption behaviour of carbon nanodots modulated by cellular membrane potential. Environ. Sci. Nano 2020, 7, 880–890.

45

Ma, J.; Kang, K.; Zhang, Y. J.; Yi, Q. Y.; Gu, Z. W. Detachable polyzwitterion-coated ternary nanoparticles based on peptide dendritic carbon dots for efficient drug delivery in cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 43923–43935.

46

Dong, Y. M.; Du, P. C.; Liu, P. Absolutely "off-on" fluorescent CD- based nanotheranostics for tumor intracellular real-time imaging and ph-triggered DOX delivery. J. Mater. Chem. B 2020, 8, 8002–8009.

47

Gao, N.; Yang, W.; Nie, H. L.; Gong, Y. Q.; Jing, J.; Gao, L. J.; Zhang, X. L. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron. 2017, 96, 300–307.

48

Du, J. Z.; Li, H. J.; Wang, J. Tumor-acidity-cleavable maleic acid amide (tacmaa): A powerful tool for designing smart nanoparticles to overcome delivery barriers in cancer nanomedicine. Acc. Chem. Res. 2018, 51, 2848–2856.

49

Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Charge- convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420.

50

Liu, J.; Chang, B. C.; Li, Q. L.; Xu, L. M.; Liu, X. X.; Wang, G. B.; Wang, Z.; Wang, L. Redox-responsive dual drug delivery nanosystem suppresses cancer repopulation by abrogating doxorubicin-promoted cancer stemness, metastasis, and drug resistance. Adv. Sci. 2019, 6, 1801987.

51

Zhang, M.; Liu, J.; Kuang, Y.; Li, Q. L.; Chen, H. Y.; Ye, H. F.; Guo, L.; Xu, Y. L.; Chen, X. Q.; Li, C. et al. "Stealthy" chitosan/mesoporous silica nanoparticle based complex system for tumor-triggered intracellular drug release. J. Mater. Chem. B 2016, 4, 3387–3397.

52

He, T. F.; Zhang, C. Z.; Vedadghavami, A.; Mehta, S.; Clark, H. A.; Porter, R. M.; Bajpayee, A. G. Multi-arm avidin nano-construct for intra-cartilage delivery of small molecule drugs. J. Control. Release 2020, 318, 109–123.

File
12274_2021_3624_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 April 2021
Revised: 24 May 2021
Accepted: 26 May 2021
Published: 23 July 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This study was funded by National Natural Science Foundation of China (Nos. 51773055, 51973053, and 22073025) and Natural Science Foundation of Hubei Province of China (No. 2019CFB748).

Return