Journal Home > Volume 15 , Issue 2

Ultrafine and highly dispersed Pd nanoparticles have drawn considerable attention with high activity, selectivity and atomic efficiency. In this paper, amorphous Pd(Ⅱ)-complex solid spheres with ~ 5 nm Pd nanoparticles loaded on were successfully achieved through a simple and gentle one-pot solution method with vitamin B1 simultaneously as complexing agent and reducing agent. An ultrathin mesoporous SiO2 shell was then coated at the surface of Pd(Ⅱ-0) spheres as the armor which could prevent the dissolution of Pd(Ⅱ) during the catalytic process. The combination of Pd(Ⅱ) and Pd(0) endowed Pd(Ⅱ-0)@m-SiO2 catalyst an excellent performance in eco-friendly aqueous media Suzuki reactions. The high activity, productivity and recyclability were all comparable with the best Pd catalysts ever reported. The ingenious formation of amorphous Pd(Ⅱ)/crystal Pd(0) with enhanced catalytic performances provides a new, scalable strategy to practical promotion of Suzuki cross-coupling reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient and recyclable amorphous Pd(Ⅱ)/crystal Pd(0) catalyst for boosting Suzuki reaction in aqueous solution

Show Author's information Yong Zhao1,§Zhongning Huang1,§Lianmeng Wang1Xiangyu Chen1Yan Zhang1Xiuqin Yang1Dawei Pang2Jianxin Kang1( )Lin Guo1( )
School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Key Laboratory of Bio-Inspired Smart interfacial Science and Technology Beihang UniversityBeijing 100191 China
Institute of Microstructure and Property of Advanced Materials Beijing University of TechnologyBeijing 100124 China

§ Yong Zhao and Zhongning Huang contributed equally to this work.

Abstract

Ultrafine and highly dispersed Pd nanoparticles have drawn considerable attention with high activity, selectivity and atomic efficiency. In this paper, amorphous Pd(Ⅱ)-complex solid spheres with ~ 5 nm Pd nanoparticles loaded on were successfully achieved through a simple and gentle one-pot solution method with vitamin B1 simultaneously as complexing agent and reducing agent. An ultrathin mesoporous SiO2 shell was then coated at the surface of Pd(Ⅱ-0) spheres as the armor which could prevent the dissolution of Pd(Ⅱ) during the catalytic process. The combination of Pd(Ⅱ) and Pd(0) endowed Pd(Ⅱ-0)@m-SiO2 catalyst an excellent performance in eco-friendly aqueous media Suzuki reactions. The high activity, productivity and recyclability were all comparable with the best Pd catalysts ever reported. The ingenious formation of amorphous Pd(Ⅱ)/crystal Pd(0) with enhanced catalytic performances provides a new, scalable strategy to practical promotion of Suzuki cross-coupling reactions.

Keywords: palladium, supported catalyst, Suzuki reaction, amorphous structure, mesoporous SiO2 shell

References(53)

1

Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev. 2018, 118, 2249–2295.

2

Molnar, Á. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev. 2011, 111, 2251–2320.

3

Beletskaya, I. P.; Alonso, F.; Tyurin, V. The Suzuki-Miyaura reaction after the Nobel prize. Coord. Chem. Rev. 2019, 385, 137–173.

4

Yang, Z. K.; Xu, N. X.; Takita, R.; Muranaka, A.; Wang, C.; Uchiyama, M. Cross-coupling polycondensation via C-O or C-N bond cleavage. Nat. Commun. 2018, 9, 1587.

5

Delaney, C. P.; Kassel, V. M.; Denmark, S. E. Potassium trimethylsilanolate enables rapid, homogeneous Suzuki–Miyaura cross-coupling of boronic esters. ACS Catal. 2020, 10, 73–80.

6

Zhu, J. C.; Lindsay, V. N. G. Benzimidazolyl palladium complexes as highly active and general bifunctional catalysts in sustainable cross-coupling reactions. ACS Catal. 2019, 9, 6993–6998.

7

Fernández, E.; Rivero-Crespo, M. A.; Domínguez, I.; Rubio-Marqués, P.; Oliver-Meseguer, J.; Liu, L. C.; Cabrero-Antonino, M.; Gavara, R.; Hernández-Garrido, J. C.; Boronat, M. et al. Base-controlled Heck, Suzuki, and Sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J. Am. Chem. Soc. 2019, 141, 1928–1940.

8

Fu, F. Y.; Xiang, J.; Cheng, H.; Cheng, L. J.; Chong, H. B.; Wang, S. X.; Li, P.; Wei, S. Q.; Zhu, M. Z.; Li, Y. D. A robust and efficient Pd3 cluster catalyst for the Suzuki reaction and its odd mechanism. ACS Catal. 2017, 7, 1860–1867.

9

Hsu, Y. C.; Wang, V. C. C.; Au-Yeung, K. C.; Tsai, C. Y.; Chang, C. C.; Lin, B. C.; Chan, Y. T.; Hsu, C. P.; Yap, G. P. A.; Jurca, T. et al. One-pot tandem photoredox and cross-coupling catalysis with a single palladium carbodicarbene complex. Angew. Chem., Int. Ed. 2018, 57, 4622–4626.

10

Vorobyeva, E.; Fako, E.; Chen, Z. P.; Collins, S. M.; Johnstone, D.; Midgley, P. A.; Hauert, R.; Safonova, O. V.; Vilé, G. et al. Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 8724–8729.

11

Littke, A. F.; Fu, G. C. Palladium-catalyzed coupling reactions of aryl chlorides. Angew. Chem., Int. Ed. 2002, 41, 4176–4211.

DOI
12

Wang, F.; Liu, L. J.; Wang, W. F.; Li, S. K.; Shi, M. Chiral NHC–metal-based asymmetric catalysis. Coord. Chem. Rev. 2012, 256, 804–853.

13

Le, C. M.; Hou, X.; Sperger, T.; Schoenebeck, F.; Lautens, M. An exclusively trans-selective chlorocarbamoylation of alkynes enabled by a palladium/phosphaadamantane catalyst. Angew. Chem., Int. Ed. 2015, 54, 15897–15900.

14

Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P. Cross-coupling and dehalogenation reactions catalyzed by (N-heterocyclic carbene)Pd(allyl)Cl complexes. J. Org. Chem. 2004, 69, 3173–3180.

15

Ayad, A. I.; Marín, C. B.; Colaco, E.; Lefevre, C.; Méthivier, C.; Driss, A. O.; Landoulsi, J.; Guénin, E. "Water soluble" palladium nanoparticle engineering for C–C coupling, reduction and cyclization catalysis. Green Chem. 2019, 21, 6646–6657.

16

Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem. 2019, 21, 381–405.

17

Guo, X. F.; Jang, D. Y.; Jang, H. G.; Kim, G. J. Hydrogenation and dehydrogenation reactions catalyzed by CNTs supported palladium catalysts. Catal. Today 2012, 186, 109–114.

18

Chan-Thaw, C. E.; Savara, A.; Villa, A. Selective benzyl alcohol oxidation over Pd catalysts. Catalysts 2018, 8, 431.

19

Kubota, K.; Seo, T.; Koide, K.; Hasegawa, Y.; Ito, H. Olefin-accelerated solid-state C-N cross-coupling reactions using mechanochemistry. Nat. Commun. 2019, 10, 111.

20

Das, P.; Linert, W. Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord. Chem. Rev. 2016, 311, 1–23.

21

Banerjee, S.; Basheer, C.; Zare, R. N. A study of heterogeneous catalysis by nanoparticle-embedded paper-spray ionization mass spectrometry. Angew. Chem., Int. Ed. 2016, 55, 12807–12811.

22

Xu, B.; Yang, H.; Zhou, G.; Wang, X. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Sci. China Mater. 2014, 57, 34–41.

23

Favier, I.; Pla, D.; Gómez, M. Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations. Chem. Rev. 2020, 120, 1146–1183.

24

Li, Y. L.; Zhang, Z. Q.; Fan, T.; Li, X. J.; Ji, J.; Dong, P.; Baines, R.; Shen, J. F.; Ye, M. X. Magnetic core-shell to yolk-shell structures in palladium-catalyzed Suzuki-Miyaura reactions: Heterogeneous versus homogeneous nature. ChemPlusChem 2016, 81, 564–573.

25

Han, B.; Wang, H. L.; Wang, C. M.; Wu, H.; Zhou, W.; Baines, R.; Shen, J. F. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J. Am. Chem. Soc. 2019, 141, 8737–8740.

26

Elias, W. C.; Signori, A. M.; Zaramello, L.; Albuquerque, B. L.; de Oliveira, D. C.; Domingos, J. B. Mechanism of a Suzuki-type homo­coupling reaction catalyzed by palladium nanocubes. ACS Catal. 2017, 7, 1462–1469.

27

Shi, W. W.; Chen, X. Q.; Xu, S. Y.; Cui, J. B.; Wang, L. Y. Highly efficient PdCu3 nanocatalysts for Suzuki–Miyaura reaction. Nano Res. 2016, 9, 2912–2920.

28

Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B. H. Sustainable Fe-ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-couplings in water. Science 2015, 349, 1087–1091.

29

Liu, X.; Astruc, D. Development of the applications of palladium on charcoal in organic synthesis. Adv. Synth. Catal. 2018, 360, 3426–3459.

30

Hemmati, S.; Mehrazin, L.; Pirhayati, M.; Veisi, H. Immobilization of palladium nanoparticles on metformin-functionalized graphene oxide as a heterogeneous and recyclable nanocatalyst for Suzuki coupling reactions and reduction of 4-nitrophenol. Polyhedron 2019, 158, 414–422.

31

Biglione, C.; Cappelletti, A. L.; Strumia, M. C.; Martín, S. E.; Uberman, P. M. Magnetic pd nanocatalyst Fe3O4@Pd for C–C bond formation and hydrogenation reactions. J. Nanopart. Res. 2018, 20, 127.

32

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

33

Huang, J. P.; Wang, W.; Li, H. X. Water–medium organic reactions catalyzed by active and reusable Pd/Y heterobimetal–organic framework. ACS Catal. 2013, 3, 1526–1536.

34

Kim, S.; Jee, S.; Choi K. M.; Shin, D. S. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media. Nano Res. 2021, 14, 486–492.

35

Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic frameworks catalyzed C-C and C-heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 1922–1947.

36

Li, J. W.; Liao, J. H.; Ren, Y. W.; Liu, C.; Yue, C. L.; Lu, J. M.; Jiang, H. F. Palladium catalysis for aerobic oxidation systems using robust metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 17148–17152.

37

Gallon, B. J.; Kojima, R. W.; Kaner, R. B.; Diaconescu, P. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew. Chem., Int. Ed. 2007, 46, 7251–7254.

38

Gao, S. Q.; Wang, Z. H.; Ma, L.; Liu, Y. T.; Gao, J.; Jiang, Y. J. Mesoporous core–shell nanostructures bridging metal and biocatalyst for highly efficient cascade reactions. ACS Catal. 2020, 10, 1375–1380.

39

Li, P.; Liu, W.; Dennis, J. S.; Zeng, C. Ultrafine alloy nanoparticles converted from 2D intercalated coordination polymers for catalytic application. Adv. Funct. Mater. 2016, 26, 5658–5668.

40

Veisi, H.; Najafi, S.; Hemmati, S. Pd(Ⅱ)/Pd(0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. Int. J. Biol. Macromol. 2018, 113, 186–194.

41

Becica, J.; Heath, O. R. J.; Zheng C. H. M.; Leitch, D. C. Palladium-catalyzed cross-coupling of alkenyl carboxylates. Angew. Chem., Int. Ed. 2020, 59, 17277–17281.

42

Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675.

43

Lovander, M. D.; Lyon, J. D.; Parr IV, D. L.; Wang, J. N.; Parke, B.; Leddy, J. Critical review—electrochemical properties of 13 vitamins: A critical review and assessment. J. Electrochem. Soc. 2018, 165, G18–G49.

44

Díaz-Marta A. S.; Yañez, S.; Lasorsa, E.; Pacheco, P.; Tubío, C. R.; Rivas, J.; Piñeiro, Y.; Gómez, M. A. G.; Amorín, M.; Guitián, F. et al. Integrating reactors and catalysts through three-dimensional printing: Efficiency and reusability of an impregnated palladium on silica monolith in Sonogashira and Suzuki reactions. ChemCatChem 2020, 12, 1762–1771.

45

Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydr. Polym. 2020, 235, 115966.

46

Ye, T. N.; Lu, Y. F.; Xiao, Z. W.; Li, J.; Nakao, T.; Abe, H.; Niwa, Y.; Kitano, M.; Tada, T.; Hosono, H. Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions. Nat. Commun. 2019, 10, 5653.

47

Arghan, M.; Koukabi, N.; Kolvari, E. Mizoroki-Heck and Suzuki-Miyaura reactions mediated by poly(2-acrylamido-2-methyl-1-propanesulfonic acid)-stabilized magnetically separable palladium catalyst. Appl. Organometal. Chem. 2018, 32, e4346.

48

Zhang, Y. N.; Yang, Y.; Duan, H. C.; Li, C. L. Mussel-inspired catechol-formaldehyde resin-coated Fe3O4 core-shell magnetic nanospheres: An effective catalyst support for highly active palladium nano­particles. ACS Appl. Mater. Interfaces 2018, 10, 44535–44545.

49

Veisi, H.; Nikseresht, A.; Ahmadi, N.; Khosravi, K.; Saeidifar, F. Suzuki–Miyaura reaction by heterogeneously supported Pd nano­particles on thio-modified multi walled carbon nanotubes as efficient nanocatalyst. Polyhedron 2019, 162, 240–244.

50

Mahmoudzadeh, M.; Mehdipour, E.; Eisavi, R. MgFe2O4@SiO2-PrNH2/Pd/bimenthonoxime core-shell magnetic nanoparticles as a recyclable green catalyst for heterogeneous Suzuki cross-coupling in aqueous ethanol. J. Coord. Chem. 2019, 72, 841–859.

51

Bao, G. Y.; Bai, J.; Li, C. P. Synergistic effect of the Pd–Ni bimetal/carbon nanofiber composite catalyst in Suzuki coupling reaction. Org. Chem. Front. 2019, 6, 352–361.

52

Baran, T.; Baran, N. Y.; Mentes, A. An easily recoverable and highly reproducible agar-supported palladium catalyst for Suzuki-Miyaura coupling reactions and reduction of o-nitroaniline. Int. J. Biol. Macromol. 2018, 115, 249–256.

53

Liu, J.; Hao, J. F.; Hu, C. C.; He, B. J.; Xi, J. B.; Xiao, J. W.; Wang, S.; Bai, Z. W. Palladium nanoparticles anchored on amine-functionalized silica nanotubes as a highly effective catalyst. J. Phys. Chem. C 2018, 122, 2696–2703.

File
12274_2021_3623_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 April 2021
Revised: 21 May 2021
Accepted: 25 May 2021
Published: 22 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from Beijing Natural Science Foundation (No. 2194077), the National Natural Science Foundation of China (Nos. 51532001 and 52002010), the National Postdoctoral Program for Innovative Talents (No. BX20180020) and the China Postdoctoral Science Foundation Funded Project (No. 2018M640041).

Return