Journal Home > Volume 15 , Issue 2

The photocatalytic performances are highly dependent on the charge separation and surface reaction kinetics of photocatalysts. Aiming at figuring out the effects of co-catalyst with the lower Fermi level on photocatalytic activity, we tuned the Fermi level of Pt nanoparticles on g-C3N4(GCN) by introducing Co atom. Experimental results show that lowering the Fermi level of co-catalyst does not alter light absorption of GCN due to the invariable structure. Besides, Pt3Co with a lower Fermi level contributes less positive influence on charge separation in GCN due to an opposite effect from the stronger electron-trap ability of Pt3Co and increased band bending in GCN-Pt3Co. The density functional theory (DFT) calculations indicate that GCN-Pt3Co has faster surface reaction kinetics than GCN-Pt, owing to easier dissociation of H2O molecules and faster desorption of H* on Pt3Co. Consequently, GCN-Pt3Co exhibits an excellent H2 evolution rate with 2.91 mmol·g-1·h-1, which 2.67 times that of GCN-Pt.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst

Show Author's information Hairui Cai1Bin Wang1( )Laifei Xiong1Jinglei Bi1Hanjing Hao1Xiaojing Yu3Chao Li4Jiamei Liu4Shengchun Yang1,2( )
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic PhysicsState Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi'an Jiaotong University, No. 28 West Xianning RoadXi'an710049China
Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance ImprovementXi'an Jiaotong University, No. 28 West Xianning RoadXi'an710049China
School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
Instrument Analysis Center of Xi'an Jiaotong UniversityXi'an Jiaotong University, No. 28 West Xianning RoadXi'an710049China

Abstract

The photocatalytic performances are highly dependent on the charge separation and surface reaction kinetics of photocatalysts. Aiming at figuring out the effects of co-catalyst with the lower Fermi level on photocatalytic activity, we tuned the Fermi level of Pt nanoparticles on g-C3N4(GCN) by introducing Co atom. Experimental results show that lowering the Fermi level of co-catalyst does not alter light absorption of GCN due to the invariable structure. Besides, Pt3Co with a lower Fermi level contributes less positive influence on charge separation in GCN due to an opposite effect from the stronger electron-trap ability of Pt3Co and increased band bending in GCN-Pt3Co. The density functional theory (DFT) calculations indicate that GCN-Pt3Co has faster surface reaction kinetics than GCN-Pt, owing to easier dissociation of H2O molecules and faster desorption of H* on Pt3Co. Consequently, GCN-Pt3Co exhibits an excellent H2 evolution rate with 2.91 mmol·g-1·h-1, which 2.67 times that of GCN-Pt.

Keywords: band bending, photocatalytic hydrogen evolution, Schottky heterojunction, surface reactions, Fermi level

References(54)

1

Pan, L. F.; Kim, J. H.; Mayer, M. T.; Son, M. K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J. S.; Grätzel, M. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 2018, 1, 412-420.

2

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.

3

Zhang, Q.; Wang, W. J.; Zhang, J. Q.; Zhu, X. H.; Zhang, Q. Q.; Zhang, Y. J.; Ren, Z. M.; Song, S. S.; Wang, J. M.; Ying, Z. H. et al. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two- electron catalytic reaction. Adv. Mater. 2018, 30, 1707123.

4

Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-1909.

5

Jin, X. X.; Zhang, L. X.; Fan, X. Q.; Tian, J. J.; Wang, M.; Shi, J. L. A photo-excited electron transfer hyperchannel constructed in Pt-dispersed pyrimidine-modified carbon nitride for remarkably enhanced water-splitting photocatalytic activity. Appl. Catal. B Environ. 2018, 237, 888-894.

6

Ismail, A. A.; Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells 2014, 128, 85-101.

7

Chen, J.; Shen, S. H.; Guo, P. H.; Wang, M.; Wu, P.; Wang, X. X.; Guo, L. J. In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2014, 152-153, 335-341.

8

Wang, Y. O.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I. et al. Publisher correction: Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 5, 633.

9

Chen, J.; Shen, S. H.; Guo, P. H.; Wu, P.; Guo, L. J. Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. J. Mater. Chem. A 2014, 2, 4605-4612.

10

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.

11

Guo, Q.; Ma, Z. B.; Zhou, C. Y.; Ren, Z. F.; Yang, X. M. Single molecule photocatalysis on TiO2 surfaces. Chem. Rev. 2019, 119, 11020-11041.

12

Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983-2002.

13

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor- based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

14

Gong, J. L.; Li, C.; Wasielewski, M. R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862-1864.

15

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor- based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

16

Chen, W. B.; Wang, L.; Mo, D. Z.; He, F.; Wen, Z. L.; Wu, X. J.; Xu, H. X.; Chen, L. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew. Chem. , Int. Ed. 2020, 59, 16902-16909.

17

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

18

Patnaik, S.; Sahoo, D. P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon 2021, 172, 682-711.

19

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

20

Chen, J.; Zhao, D. M.; Diao, Z. D.; Wang, M.; Shen, S. H. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: A case study of (Co, Ni)Fe2O4 modification. Sci. Bull. 2016, 61, 292-301.

21

Mamba, G.; Mishra, A. K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347-377.

22

Liao, Y. L.; Zhu, S. M.; Ma, J.; Sun, Z. H.; Yin, C.; Zhu, C. L.; Lou, X. H.; Zhang, D. Tailoring the morphology of g-C3N4 by self-assembly towards high photocatalytic performance. ChemCatChem 2014, 6, 3419-3425.

23

Shakeel, M.; Arif, M.; Yasin, G.; Li, B. S.; Khan, H. D. Layered by layered Ni-Mn-LDH/g-C3N4 nanohybrid for multi-purpose photo/ electrocatalysis: Morphology controlled strategy for effective charge carriers separation. Appl. Catal. B Environ. 2019, 242, 485-498.

24

Li, G. S.; Lian, Z. C.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Nanotube- confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 2016, 19, 446-454.

25

Liu, S. W.; Chen, F.; Li, S. T.; Peng, X. X.; Xiong, Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Appl. Catal. B Environ. 2017, 211, 1-10.

26

Lin, B.; Yang, G. D.; Wang, L. Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution. Angew. Chem. , Int. Ed. 2019, 58, 4587-4591.

27

Wang, B.; Cai, H. R.; Zhao, D. M.; Song, M.; Guo, P. H.; Shen, S. H.; Li, D. S.; Yang, S. C. Enhanced photocatalytic hydrogen evolution by partially replaced corner-site C atom with P in g-C3N4. Appl. Catal. B Environ. 2019, 244, 486-493.

28

Cai, H. R.; Wang, B.; Xiong, L. F.; Yang, G.; Yuan, L. Y.; Bi, J. L.; Yu, X. J.; Zhang, X. J.; Yang, S.; Yang, S. C. Bridging effect of Co heteroatom between g-C3N4 and Pt NPs for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 394, 124964.

29

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

30

Zhang, G. G.; Huang, C. J.; Wang, X. C. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 2015, 11, 1215-1221.

31

Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J. W. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568- 12571.

32

Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Yuan, L. Y.; Yang, G. D.; Yang, S. C. Orienting the charge transfer path of type-Ⅱ heterojunction for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 256, 117853.

33

Zhu, Y. K.; Lv, C. X.; Yin, Z. C.; Ren, J.; Yang, X. F.; Dong, C. L.; Liu, H. W.; Cai, R. S.; Huang, Y. C.; Theis, W. A [001]-oriented Hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem. 2020, 132, 878-883.

34

Chen, J.; Shen, S. H.; Wu, P.; Guo, L. J. Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chem. 2015, 17, 509-517.

35

Li, H. H.; Wu, Y.; Li, C.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Jiang, Q.; Sun, C. Q.; Xu, S. Q. Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 251, 305-312.

36

Bard, A. J. Photoelectrochemistry. Science 1980, 207, 139-144.

37

Wang, S.; Xiong, L. F.; Bi, J. L.; Zhang, X. J.; Yang, G.; Yang, S. C. Structural and electronic stabilization of PtNi concave octahedral nanoparticles by P doping for oxygen reduction reaction in alkaline electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 27009-27018.

38

Jiang, S. J.; Ma, Y. W.; Jian, G. Q.; Tao, H. S.; Wang, X. Z.; Fan, Y. N.; Lu, Y. N.; Hu, Z.; Chen, Y. Facile construction of Pt-Co/CNx nanotube electrocatalysts and their application to the oxygen reduction reaction. Adv. Mater. 2009, 21, 4953-4956.

39

Wang, P.; Zong, L. L.; Guan, Z. J.; Li, Q. Y.; Yang, J. J. PtNi alloy cocatalyst modification of eosin Y-sensitized g-C3N4/GO hybrid for efficient visible-light photocatalytic hydrogen evolution. Nanoscale Res. Lett. 2018, 13, 33.

40

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 Interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462- 2472.

41

Xing, W. N.; Tu, W. G.; Han, Z. H.; Hu, Y. D.; Meng, Q. Q.; Chen, G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. ACS Energy Lett. 2018, 3, 514-519.

42

Yang, X. L.; Qian, F. F.; Zou, G. J.; Li, M. L.; Lu, J. R.; Li, Y. M.; Bao, M. T. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl. Catal. B Environ. 2016, 193, 22-35.

43

Han, M. M.; Wang, H. B.; Zhao, S. Q.; Hu, L. L.; Huang, H.; Liu, Y. One-step synthesis of CoO/g-C3N4 composites by thermal decomposition for overall water splitting without sacrificial reagents. Inorg. Chem. Front. 2017, 4, 1691-1696.

44

Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt−Co and Pt−Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC−XPS. J. Phys. Chem. B 2006, 110, 23489-23496.

45

Wang, Y.; Liu, X. Q.; Liu, J.; Han, B.; Hu, X. Q.; Yang, F.; Xu, Z. W.; Li, Y. C.; Jia, S. R.; Li, Z. et al. Carbon quantum dot implanted graphite carbon nitride nanotubes: Excellent charge separation and enhanced photocatalytic hydrogen evolution. Angew. Chem. 2018, 130, 5867-5873.

46

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.

47

Liu, F. L.; Shi, R.; Wang, Z.; Weng, Y. X.; Che, C. M.; Chen, Y. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew. Chem. , Int. Ed. 2019, 58, 11791-11795.

48

Zhao, H.; Zhang, H. Z.; Cui, G. W.; Dong, Y. M.; Wang, G. L.; Jiang, P. P.; Wu, X. M.; Zhao, N. A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: From the case of NiS/g-C3N4. Appl. Catal. B Environ. 2018, 225, 284-290.

49

Guo, F.; Shi, W. L.; Zhu, C.; Li, H.; Kang, Z. H. CoO and g-C3N4 Complement each other for highly efficient overall water splitting under visible light. Appl. Catal. B Environ. 2018, 226, 412-420.

50

Xiong, L. F.; Wang, B.; Cai, H. R.; Yang, T.; Wang, L. Q.; Yang, S. C. Neighboring effect induced by V and Cr doping in FeCoP nanoarrays for the hydrogen evolution reaction with Pt-like performance. J. Mater. Chem. A 2020, 8, 1184-1192.

51

Zhou, G.; Shan, Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. Z. et al. Photoinduced semiconductor- metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2019, 10, 399.

52

Zhang, L. N.; Lang, Z. L.; Wang, Y. H.; Tan, H. Q.; Zang, H. Y.; Kang, Z. H.; Li, Y. G. Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy Environ. Sci. 2019, 12, 2569-2580.

53

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411-419.

54

Han, C. C.; Lu, Y.; Zhang, J. L.; Ge, L.; Li, Y. J.; Chen, C. F.; Xin, Y. J.; Wu, L. E.; Fang, S. M. Novel PtCo alloy nanoparticle decorated 2D g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation. J. Mater. Chem. A 2015, 3, 23274-23282.

File
12274_2021_3615_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2021
Revised: 20 May 2021
Accepted: 21 May 2021
Published: 08 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2017YFE0193900), the National Natural Science Foundation of China (No. 51802255), the Natural Science Foundation of Shaanxi Province (Nos. 2021GXLH-Z-O and 2020JZ-02), the project of Innovative Team of Shaanxi Province (2020TD-001), the China Fundamental Research Funds for the Central Universities, and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities. We thank Liqun Wang, Xiaojing Zhang and Jiao Li for the help of data analyses, and we also thank the characterization support, such as TEM, UV-vis, EDS, XPS, time-resolved PL, and steady-state PL, from the Instrument Analysis Center of Xi'an Jiaotong University. DFT calculations were performed using the HPC Platform of Xi'an Jiaotong University.

Return