AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Charge trap-based carbon nanotube transistor for synaptic function mimicking

Jie Zhao1,2Fang Liu1,2Qi Huang1,2Tongkang Lu1,2Meiqi Xi1,2Lianmao Peng1,2,3Xuelei Liang1,2,3,4( )
Center for Carbon-Based Electronics Peking University Beijing 100871 China
Key Laboratory for the Physics and Chemistry of Nanodevices Department of Electronics Peking University Beijing 100871 China
Shanxi Institute for Carbon-Based Thin Film Electronics Peking University (SICTFE-PKU) Taiyuan 030012 China
Taiyuan Laboratory for Carbon-Based Thin Film Electronics Taiyuan 030012 China
Show Author Information

Graphical Abstract

Abstract

Brain-inspired neuromorphic computing is expected for breaking through the bottleneck of the computer of conventional von Neumann architecture. To this end, the first step is to mimic functions of biological neurons and synapses by electronic devices. In this paper, synaptic transistors were fabricated by using carbon nanotube (CNT) thin films and interface charge trapping effects were confirmed to dominate the weight update of the synaptic transistors. Large synaptic weight update was realized due to the high sensitivity of the CNTs to the trapped charges in vicinity. Basic synaptic functions including inhibitory post-synaptic current (IPSC), excitatory post-synaptic current (EPSC), spike-timing-dependent plasticity (STDP), and paired-pulse facilitation (PPF) were mimicked. Large dynamic range of STDP (> 2, 180) and low power consumption per spike (~ 0.7 pJ) were achieved. By taking advantage of the long retention time of the trapped charges and uniform device-to-device performance, long-term image memory behavior of neural network was successfully imitated in a CNT synaptic transistor array.

Electronic Supplementary Material

Download File(s)
12274_2021_3611_MOESM1_ESM.pdf (1.7 MB)

References

1

Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

2

Kuzum, D.; Yu, S. M.; Wong, H. S. P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.

3

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

4

Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; Nakamura, Y. et al. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673.

5

Abbott, L. F.; Regehr, W. G. Synaptic computation. Nature 2004, 431, 796–803.

6

Drachman, D. A. Do we have brain to spare? Neurology 2005, 64, 2004–2005.

7

Zhou, F. C.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671.

8

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

9

Han, H.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Xu, W. T. Recent progress in three-terminal artificial synapses: From device to system. Small 2019, 15, 1900695.

10

Wan, C. J.; Liu, Y. H.; Feng, P.; Wang, W.; Zhu, L. Q.; Liu, Z. P.; Shi, Y.; Wan, Q. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater. 2016, 28, 5878–5885.

11

Nishitani, Y.; Kaneko, Y.; Ueda, M.; Morie, T.; Fujii, E. Three- terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 2012, 111, 124108.

12

Bolat, S.; Torres Sevilla, G.; Mancinelli, A.; Gilshtein, E.; Sastre, J.; Cabas Vidani, A.; Bachmann, D.; Shorubalko, I.; Briand, D.; Tiwari, A. N. et al. Synaptic transistors with aluminum oxide dielectrics enabling full audio frequency range signal processing. Sci. Rep. 2020, 10, 16664.

13

Sanchez Esqueda, I.; Yan, X. D.; Rutherglen, C.; Kane, A.; Cain, T.; Marsh, P.; Liu, Q. Z.; Galatsis, K.; Wang, H.; Zhou, C. W. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing. ACS Nano 2018, 12, 7352–7361.

14

Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepúlveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.

15

Kim, S.; Lee, Y.; Kim, H. D.; Choi, S. J. Parallel weight update protocol for a carbon nanotube synaptic transistor array for accelerating neuromorphic computing. Nanoscale 2020, 12, 2040– 2046.

16

Molina-Lopez, F.; Gao, T. Z.; Kraft, U.; Zhu, C.; Öhlund, T.; Pfattner, R.; Feig, V. R.; Kim, Y.; Wang, S.; Yun, Y. et al. Inkjet- printed stretchable and low voltage synaptic transistor array. Nat. Commun. 2019, 10, 2676.

17

Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.

18

Wang, S. G.; Sellin, P. Pronounced hysteresis and high charge storage stability of single-walled carbon nanotube-based field-effect transistors. Appl. Phys. Lett. 2005, 87, 133117.

19

Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. M. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

20

Kim, S.; Choi, B.; Lim, M.; Yoon, J.; Lee, J.; Kim, H. D.; Choi, S. J. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano 2017, 11, 2814– 2822.

21

Dong, G. D.; Zhao, J.; Shen, L. J.; Xia, J. Y.; Meng, H.; Yu, W. H.; Huang, Q.; Han, H.; Liang, X. L.; Peng, L. M. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Res. 2018, 11, 4356–4367.

22

Zhao, J.; Shen, L. J.; Liu, F.; Zhao, P.; Huang, Q.; Han, H.; Peng, L. M.; Liang, X. L. Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Res. 2020, 13, 1749–1755.

23

Kim, S.; Lim, M.; Kim, Y.; Kim, H. D.; Choi, S. J. Impact of synaptic device variations on pattern recognition accuracy in a hardware neural network. Sci. Rep. 2018, 8, 2638.

24

Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting swcnts for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.

25

Kim, W.; Javey, A.; Vermesh, O.; Wang, O.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

26

Ortiz-Conde, A.; Garcı́a Sánchez, F. J.; Liou, J. J.; Cerdeira, A.; Estrada, M.; Yue, Y. A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliabil. 2002, 42, 583–596.

27

Park, R. S.; Shulaker, M. M.; Hills, G.; Liyanage, L. S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599–4608.

28

Park, R. S.; Hills, G.; Sohn, J.; Mitra, S.; Shulaker, M. M.; Wong, H. S. P. Hysteresis-free carbon nanotube field-effect transistors. ACS Nano 2017, 11, 4785–4791.

29

Robert-Peillard, A.; Rotkin, S. V. Modeling hysteresis phenomena in nanotube field-effect transistors. IEEE Trans. Nanotechnol. 2005, 4, 284–288.

30

Ha, T. J.; Kiriya, D.; Chen, K.; Javey, A. Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. ACS Appl. Mater. Interfaces 2014, 6, 8441–8446.

31

Xia, J. Y.; Zhao, J.; Meng, H.; Huang, Q.; Dong, G. D.; Zhang, H.; Liu, F.; Mao, D. F.; Liang, X. L.; Peng, L. M. Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale 2018, 10, 4202–4208.

32

Jung, H.; Choi, S.; Jang, J. T.; Yoon, J.; Lee, J.; Lee, Y.; Rhee, J.; Ahn, G.; Yu, H. R.; Kim, D. M. et al. Universal model of bias-stress- induced instability in inkjet-printed carbon nanotube networks field-effect transistors. Solid-State Electron. 2018, 140, 80–85.

33

Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

34

Dai, S. L.; Wu, X. H.; Liu, D. P.; Chu, Y. L.; Wang, K.; Yang, B.; Huang, J. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 21472–21480.

35

Xu, W. T.; Min, S. Y.; Hwang, H.; Lee, T. W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326.

36

Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700.

37

Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.

38
Kandel, E. R.; Schwartz, J. H.; Jessell, T. M. Principles of Neural Science; 4th ed. Principles of Neural Science: New York, 2000.
39

Bi, G. Q.; Poo, M. M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472.

40

Dan, Y.; Poo, M. M. Spike timing-dependent plasticity: From synapse to perception. Physiol. Rev. 2006, 86, 1033–1048.

41

Yang, Y.; He, Y. L.; Nie, S.; Shi, Y.; Wan, Q. Light stimulated IGZO- based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron Device Lett. 2018, 39, 897–900.

42

Ren, Y.; Yang, J. Q.; Zhou, L.; Mao, J. Y.; Zhang, S. R.; Zhou, Y.; Han, S. T. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 2018, 28, 1805599.

43

Li, J.; Jiang, D. L.; Yang, Y. H.; Zhou, Y. H.; Chen, Q.; Zhang, J. H. Li-Ion doping as a strategy to modulate the electrical-double-layer for improved memory and learning behavior of synapse transistor based on fully aqueous-solution-processed In2O3/AlLiO film. Adv. Electron. Mater. 2020, 6, 1901363.

44
Dong, G. D.; Zhao, J.; Shen, L. J.; Xia, J. Y.; Meng, H.; Yu, W. H.; Huang, Q.; Han, H.; Liang, X. L.; Peng, L. M. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Res 2018, 11, 4356-4367.https://doi.org/10.1007/s12274-018-2025-9
45
Zhao, J.; Shen, L.; Liu, F.; Zhao, P.; Huang, Q.; Han, H.; Peng, L.; Liang, X. Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Res 2020, 13, 1749-1755.https://doi.org/10.1007/s12274-020-2801-1
46
Xia, J.; Zhao, J.; Meng, H.; Huang, Q.; Dong, G.; Zhang, H.; Liu, F.; Mao, D.; Liang, X.; Peng, L. Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale 2018, 10, 4202-4208.https://doi.org/10.1039/C7NR08676H
Nano Research
Pages 4258-4263
Cite this article:
Zhao J, Liu F, Huang Q, et al. Charge trap-based carbon nanotube transistor for synaptic function mimicking. Nano Research, 2021, 14(11): 4258-4263. https://doi.org/10.1007/s12274-021-3611-9
Topics:

629

Views

17

Crossref

17

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 13 March 2021
Revised: 02 May 2021
Accepted: 20 May 2021
Published: 13 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return