Journal Home > Volume 14 , Issue 9

Nano structure including pore structure and amine assembly is critical for improving sorption and desorption kinetics for adsorptive CO2 separation. The present work delineates (1) the influence of the nano-scale pore structure of amine-functionalized solid sorbents, and (2) effect of changing the assembly of amine molecules on surface of nano-porous SiO2 on the rates of adsorption and desorption of CO2. 50PEI-MSN sorbent with inverted cone-shaped pores was prepared by using mesoporous silica nanospheres (MSN) with inverted cone-shaped pores for the loading of polyethyleneimine (PEI). Co-structure-directing (CSD) method was used to synthesize the sorbent with arranged amine assembly at nano-scale (2N-CSD). By comparison with 50PEI-SBA15 as a benchmark sorbent, both sorbents have improved sorption and desorption kinetics. There are significant effects of nano pore structure and amine assembly on the sorption and desorption kinetics. The inverted cone-shaped pores in MSN allow loading polymeric amines in their narrower ends and leaving larger pore mouths open for the transport of CO2; 50PEI-MSN shows a maximum sorption rate of 81.4 mg·g-1·min-1 with average sorption rate of 25.4 mg·g-1·min-1 at 80 °C which are 34% and 59% higher than the corresponding values for 50PEI-SBA15; a maximum desorption rate of 38.4 mg·g-1·min-1 with average desorption rate of 11.8 mg·g-1·min-1 ramping from 30 to 95 °C which are 37% and 156% higher than the corresponding values for 50PEI-SBA15. The arranged monolayer-like amine assembly on surface of nanoporous SiO2 likely provides high amine sorption sites through improved accessibility of amine, and 2N-CSD shows a maximum sorption rate of 60.5 mg·g-1·min-1, with average sorption rate of 12.8 mg·g-1·min-1 at 30 °C which are 108% and 205% higher than the corresponding values for 50PEI-SBA15; a lower maximum desorption rate of 9.7 mg·g-1·min-1 and average desorption rate of 9.8 mg·g-1·min-1 ramping from 30 to 95 °C which is 250% higher than the corresponding value for 50PEI-SBA15. The present work demonstrates the importance of tailoring nano-scale pore structure and amine assembly for significantly improving sorption and desorption kinetics of adsorptive CO2 separation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Impacts of nano-scale pore structure and organic amine assembly in porous silica on the kinetics of CO2 adsorptive separation

Show Author's information Feijian Lou1,2Guanghui Zhang1Limin Ren2Xinwen Guo1( )Chunshan Song1,3( )
State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, Hong Kong, China

Abstract

Nano structure including pore structure and amine assembly is critical for improving sorption and desorption kinetics for adsorptive CO2 separation. The present work delineates (1) the influence of the nano-scale pore structure of amine-functionalized solid sorbents, and (2) effect of changing the assembly of amine molecules on surface of nano-porous SiO2 on the rates of adsorption and desorption of CO2. 50PEI-MSN sorbent with inverted cone-shaped pores was prepared by using mesoporous silica nanospheres (MSN) with inverted cone-shaped pores for the loading of polyethyleneimine (PEI). Co-structure-directing (CSD) method was used to synthesize the sorbent with arranged amine assembly at nano-scale (2N-CSD). By comparison with 50PEI-SBA15 as a benchmark sorbent, both sorbents have improved sorption and desorption kinetics. There are significant effects of nano pore structure and amine assembly on the sorption and desorption kinetics. The inverted cone-shaped pores in MSN allow loading polymeric amines in their narrower ends and leaving larger pore mouths open for the transport of CO2; 50PEI-MSN shows a maximum sorption rate of 81.4 mg·g-1·min-1 with average sorption rate of 25.4 mg·g-1·min-1 at 80 °C which are 34% and 59% higher than the corresponding values for 50PEI-SBA15; a maximum desorption rate of 38.4 mg·g-1·min-1 with average desorption rate of 11.8 mg·g-1·min-1 ramping from 30 to 95 °C which are 37% and 156% higher than the corresponding values for 50PEI-SBA15. The arranged monolayer-like amine assembly on surface of nanoporous SiO2 likely provides high amine sorption sites through improved accessibility of amine, and 2N-CSD shows a maximum sorption rate of 60.5 mg·g-1·min-1, with average sorption rate of 12.8 mg·g-1·min-1 at 30 °C which are 108% and 205% higher than the corresponding values for 50PEI-SBA15; a lower maximum desorption rate of 9.7 mg·g-1·min-1 and average desorption rate of 9.8 mg·g-1·min-1 ramping from 30 to 95 °C which is 250% higher than the corresponding value for 50PEI-SBA15. The present work demonstrates the importance of tailoring nano-scale pore structure and amine assembly for significantly improving sorption and desorption kinetics of adsorptive CO2 separation.

Keywords: kinetics, CO2 capture, amine-functionalized solid sorbents, pore structure, amine assembly

References(48)

[1]
IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, 2014.
[2]
Wang, X. X.; Schwartz, V.; Clark, J. C.; Ma, X. L.; Overbury, S. H.; Xu, X. C.; Song, C. S. Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C 2009, 113, 7260-7268.
[3]
Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 2002, 16, 1463-1469.
[4]
Xu, X. C.; Song, C. S.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W. Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microp. Mesop. Mater. 2003, 62, 29-45.
[5]
Lou, F. J.; Zhang, A. F.; Zhang, G. H.; Ren, L. M.; Guo, X. W.; Song, C. S. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure. Appl. Energy 2020, 264, 114637.
[6]
Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. USA 2009, 106, 20637-20640.
[7]
Huang, N.; Chen, X.; Krishna, R.; Jiang, D. L. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem., Int. Ed. 2015, 54, 2986-2990.
[8]
Kutty, R. G.; Sreejith, S.; Kong, X. H.; He, H. Y.; Wang, H.; Lin, J. H.; Suenaga, K.; Lim, C. T.; Zhao, Y. L.; Ji, W. et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Res. 2018, 11, 6325-6335.
[9]
Wang, B.; Zhang, X.; Huang, H. L.; Zhang, Z. J.; Yildirim, T.; Zhou, W.; Xiang, S. C.; Chen, B. L. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res. 2021, 14, 507-511.
[10]
Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C. S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010, 3, 632-642.
[11]
Kishor, R.; Ghoshal, A. K. High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation. Chem. Eng. J. 2016, 300, 236-244.
[12]
Bollini, P.; Didas, S. A.; Jones, C. W. Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 2011, 21, 15100-15120.
[13]
Niu, M. Y.; Yang, H. M.; Zhang, X. C.; Wang, Y. T.; Tang, A. D. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interfaces 2016, 8, 17312-17320.
[14]
Zhang, G. J.; Zhao, P. Y.; Xu, Y.; Yang, Z. X.; Cheng, H. Z.; Zhang, Y. F. Structure property-CO2 capture performance relations of amine-functionalized porous silica composite adsorbents. ACS Appl. Mater. Interfaces 2018, 10, 34340-34354.
[15]
Vilarrasa-Garcia, E.; Moya, E. M. O.; Cecilia, J. A.; Cavalcante, C. L. Jr.; Jiménez-Jiménez, J.; Azevedo, D. C. S.; Rodríguez-Castellón, E. CO2 adsorption on amine modified mesoporous silicas: Effect of the progressive disorder of the honeycomb arrangement. Microp. Mesop. Mater. 2015, 209, 172-183.
[16]
Wang, X. X.; Ma, X. L.; Song, C. S.; Locke, D. R.; Siefert, S.; Winans, R. E.; Möllmer, J.; Lange, M.; Möller, A.; Gläser, R. Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas: Characterization and sorption properties. Microp. Mesop. Mater. 2013, 169, 103-111.
[17]
Cogswell, C. F.; Jiang, H.; Ramberger, J.; Accetta, D.; Willey, R. J.; Choi, S. Effect of pore structure on CO2 adsorption characteristics of aminopolymer impregnated MCM-36. Langmuir 2015, 31, 4534-4541.
[18]
Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E. S. CO2 uptake and adsorption kinetics of pore-expanded SBA-15 double-functionalized with amino groups. Energy Fuels 2013, 27, 7637-7644.
[19]
Wen, J. J.; Gu, F. N.; Wei, F.; Zhou, Y.; Lin, W. G.; Yang, J.; Yang, J. Y.; Wang, Y.; Zou, Z. G.; Zhu, J. H. One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent. J. Mater. Chem. 2010, 20, 2840-2846.
[20]
Wang, L.; Yao, M. L.; Hu, X.; Hu, G. S.; Lu, J. Q.; Luo, M. F.; Fan, M. H. Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Appl. Surf. Sci. 2015, 324, 286-292.
[21]
Son, W. J.; Choi, J. S.; Ahn, W. S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microp. Mesop. Mater. 2008, 113, 31-40.
[22]
Heydari-gorji, A.; Yang, Y.; Sayari, A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy Fuels 2011, 25, 4206-4210.
[23]
Cogswell, C. F.; Xie, Z.; Wolek, A.; Wang, Y.; Stavola, A.; Finkenaur, M.; Gilmore, E.; Lanzillotti, M.; Choi, S. Pore structure-CO2 adsorption property relations of supported amine materials with multi-pore networks. J. Mater. Chem. A 2017, 5, 8526-8536.
[24]
Wang, X. X.; Song, C. S.; Gaffney, A. M.; Song, R. Z. New molecular basket sorbents for CO2 capture based on mesoporous sponge-like TUD-1. Catal. Today 2014, 238, 95-102.
[25]
Kishor, R.; Ghoshal, A. K. Amine-modified mesoporous silica for CO2 adsorption: The role of structural parameters. Ind. Eng. Chem. Res. 2017, 56, 6078-6087.
[26]
Hou, X. N.; Zhuang, L. Z.; Ma, B. B.; Chen, S. X.; He, H.; Yin, F. Q. Silanol-rich platelet silica modified with branched amine for efficient CO2 capture. Chem. Eng. Sci. 2018, 181, 315-325.
[27]
Kwon, H. T.; Sakwa-novak, M. A.; Pang, S. H.; Sujan, A. R.; Ping, E. W.; Jones, C. W. Aminopolymer-impregnated hierarchical silica structures: Unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions. Chem. Mater. 2019, 31, 5229-5237.
[28]
Gao, C. B.; Qiu, H. B.; Zeng, W.; Sakamoto, Y.; Terasaki, O.; Sakamoto, K.; Chen, Q.; Che, S. N. Formation mechanism of anionic surfactant-templated mesoporous silica. Chem. Mater. 2006, 18, 3904-3914.
[29]
Zheng, H. Q.; Gao, C. B.; Che, S. N. Amino and quaternary ammonium group functionalized mesoporous silica: An efficient ion-exchange method to remove anionic surfactant from AMS. Microp. Mesop. Mater. 2008, 116, 299-307.
[30]
Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.
[31]
Zhang, A. F.; Gu, L.; Hou, K. K.; Dai, C. Y.; Song, C. S.; Guo, X. W. Mesostructure-tunable and size-controllable hierarchical porous silica nanospheres synthesized by aldehyde-modified Stöber method. RSC Adv. 2015, 5, 58355-58362.
[32]
Lashaki, M. J.; Sayari, A. CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure. Chem. Eng. J. 2018, 334, 1260-1269.
[33]
Kishor, R.; Ghoshal, A. K. Polyethylenimine functionalized as-synthesized KIT-6 adsorbent for highly CO2/N2 selective separation. Energy Fuels 2016, 30, 9635-9644.
[34]
Zhai, Y. X.; Chuang, S. S. C. The nature of adsorbed carbon dioxide on immobilized amines during carbon dioxide capture from air and simulated flue gas. Energy Technol. 2017, 5, 510-519.
[35]
Yu, J.; Chuang, S. S. C. The structure of adsorbed species on immobilized amines in CO2 capture: An in situ IR study. Energy Fuels 2016, 30, 7579-7587.
[36]
Danon, A.; Stair, P. C.; Weitz, E. FTIR study of CO2 adsorption on amine-grafted SBA-15: Elucidation of adsorbed species. J. Phys. Chem. C 2011, 115, 11540-11549.
[37]
Shimon, D.; Chen, C. H.; Lee, J. J.; Didas, S. A.; Sievers, C.; Jones, C. W.; Hayes, S. E. 15N solid state NMR spectroscopic study of surface amine groups for carbon capture: 3-Aminopropylsilyl grafted to SBA-15 mesoporous silica. Environ. Sci. Technol. 2018, 52, 1488-1495.
[38]
Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 2006, 16, 1717-1722.
[39]
Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 6795-6803.
[40]
Didas, S. A.; Sakwa-Novak, M. A.; Foo, G. S.; Sievers, C.; Jones, C. W. Effect of amine surface coverage on the co-adsorption of CO2 and water: Spectral deconvolution of adsorbed species. J. Phys. Chem. Lett. 2014, 5, 4194-4200.
[41]
Le, Y.; Guo, D. P.; Cheng, B.; Yu, J. G. Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability. J. Colloid Interface Sci. 2013, 408, 173-180.
[42]
Taheri, F. S.; Ghaemi, A.; Maleki, A.; Shahhosseini, S. High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite. Energy Fuels 2019, 33, 5384-5397.
[43]
Garip, M.; Gizli, N. Ionic liquid containing amine-based silica aerogels for CO2 capture by fixed bed adsorption. J. Mol. Liq. 2020, 310, 113227.
[44]
Kishor, R.; Ghoshal, A. K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chem. Eng. J. 2015, 262, 882-890.
[45]
Wang, Y. R.; Yang, R. T. Template removal from SBA-15 by ionic liquid for amine grafting: applications to CO2 capture and natural gas desulfurization. ACS Sustainable Chem. Eng. 2020, 8, 8295-8304.
[46]
Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microp. Mesop. Mater. 2011, 143, 174-179.
[47]
Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 2003, 42, 2427-2433.
[48]
Ren, Y. P.; Ding, R. Y.; Yue, H. R.; Tang, S. Y.; Liu, C. J.; Zhao, J. B.; Lin, W.; Liang, B. Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture. Appl. Energy 2017, 198, 250-260.
File
12274_2021_3609_MOESM1_ESM.pdf (771.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2021
Revised: 19 May 2021
Accepted: 20 May 2021
Published: 09 June 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0600902-4), the Fundamental Research Funds for the Central Universities (No. DUT20RC (5)002), and the CUHK Research Startup Fund (No. #4930981).

Return