Journal Home > Volume 14 , Issue 10

Water oxidation, an essential step in photosynthesis, has attracted intense research attention. Understanding the reaction pathways at the electrocatalyst/water interface is of great importance for the development of water oxidation catalysts. How the water is oxidized on the electrocatalyst surface by the positive charges is still an open question. This review summarizes current advances in studies on surface chemistry within the context of water oxidation, including the intermediates, reaction mechanisms, and their influences on the reaction kinetics. The Tafel analyses of some electrocatalysts and the rate-laws relative to charge consumption rates are also presented. Moreover, how the multiple charge transfer relies on the intermediate coverage and the accumulated charge numbers is outlined. Lastly, the intermediates and rate-determining steps on some water oxidation catalysts are discussed based on density functional theories.


menu
Abstract
Full text
Outline
About this article

Mechanisms of water oxidation on heterogeneous catalyst surfaces

Show Author's information Xiaogang Yang1,§( )Yuanxing Wang2,§Chang Ming Li1,3Dunwei Wang2( )
Institute of Materials Science and Devices,School of Materials Science and Engineering, Suzhou University of Science and Technology,Suzhou,215011,China;
Department of Chemistry, Boston College,Merkert Chemistry Center,MA,02467,USA;
Institute of Clean Energy & Advanced Materials,Southwest University,Chongqing,400715,China;

§ Xiaogang Yang and Yuanxing Wang contributed equally to this work.

Abstract

Water oxidation, an essential step in photosynthesis, has attracted intense research attention. Understanding the reaction pathways at the electrocatalyst/water interface is of great importance for the development of water oxidation catalysts. How the water is oxidized on the electrocatalyst surface by the positive charges is still an open question. This review summarizes current advances in studies on surface chemistry within the context of water oxidation, including the intermediates, reaction mechanisms, and their influences on the reaction kinetics. The Tafel analyses of some electrocatalysts and the rate-laws relative to charge consumption rates are also presented. Moreover, how the multiple charge transfer relies on the intermediate coverage and the accumulated charge numbers is outlined. Lastly, the intermediates and rate-determining steps on some water oxidation catalysts are discussed based on density functional theories.

Keywords: density functional theory, water oxidation, intermediate, rate-determining step, rate-law, Tafel analysis

References(101)

1

Junge, W. Oxygenic photosynthesis: History, status and perspective. Quart. Rev. Biophys. 2019, 52, e1.

2

Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890-899.

3

Jia, J. Y.; Seitz, L. C.; Benck, J. D.; Huo, Y. J.; Chen, Y. S.; Ng, J. W. D.; Bilir, T.; Harris, J. S.; Jaramillo, T. F. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 2016, 7, 13237.

4

Govind Rajan, A.; Martirez, J. M. P.; Carter, E. A. Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? ACS Catal. 2020, 10, 11177-11234.

5

Yang, X. G.; Wang, D. W. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657-6693.

6

Wang, C. H.; Li, C. M.; Liu, J. L.; Guo, C. X. Engineering transition metal-based nanomaterials for high-performance electrocatalysis. Mater. Rep. : Energy 2021, 1, 100006.

7

Takashima, T.; Hashimoto, K.; Nakamura, R. Mechanisms of pH- dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 2012, 134, 1519-1527.

8

Chen, C.; Hu, J. D.; Yang, X. G.; Yang, T. Y.; Qu, J. F.; Guo, C. X.; Li, C. M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162-20173.

9

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.

10

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

11

Mu, R. T.; Zhao, Z. J.; Dohnálek, Z.; Gong, J. L. Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 2017, 46, 1785-1806.

12

Xiao, Y.; Hu, T.; Zhao, X.; Hu, F. X.; Yang, H. B.; Li, C. M. Thermo- selenizing to rationally tune surface composition and evolve structure of stainless steel to electrocatalytically boost oxygen evolution reaction. Nano Energy 2020, 75, 104949.

13

Li, J.; Triana, C. A.; Wan, W.; Adiyeri Saseendran, D. P.; Zhao, Y.; Balaghi, S. E.; Heidari, S.; Patzke, G. R. Molecular and heterogeneous water oxidation catalysts: Recent progress and joint perspectives. Chem. Soc. Rev. 2021, 50, 2444-2485.

14

Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192-5247.

15

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

16

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196-2214.

17

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.

18

Cox, N.; Pantazis, D. A.; Lubitz, W. Current understanding of the mechanism of water oxidation in photosystem ii and its relation to XFEL data. Annu. Rev. Biochem. 2020, 89, 795-820.

19

Kern, J.; Chatterjee, R.; Young, I. D.; Fuller, F. D.; Lassalle, L.; Ibrahim, M.; Gul, S.; Fransson, T.; Brewster, A. S.; Alonso-Mori, R. et al. Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature 2018, 563, 421-425.

20

Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120-14136.

21

Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 Å. Nature 2011, 473, 55-60.

22

Kok, B.; Forbush, B.; McGloin, M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem. Photobiol. 1970, 11, 457-475.

23

Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W.; Orth, P. Crystal structure of photosystem Ⅱ from Synechococcus elongatus at 3.8 Å resolution. Nature 2001, 409, 739-743.

24

Haumann, M.; Liebisch, P.; Müller, C.; Barra, M.; Grabolle, M.; Dau, H. Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 2005, 310, 1019-1021.

25

Zaharieva, I.; Wichmann, J. M.; Dau, H. Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations. J. Biol. Chem. 2011, 286, 18222-18228.

26

Ananyev, G.; Roy-Chowdhury, S.; Gates, C.; Fromme, P.; Dismukes, G. C. The catalytic cycle of water oxidation in crystallized photosystem ii complexes: Performance and requirements for formation of intermediates. ACS Catal. 2019, 9, 1396-1407.

27

Armstrong, D. A.; Huie, R. E.; Koppenol, W. H.; Lymar, S. V.; Merényi, G.; Neta, P.; Ruscic, B.; Stanbury, D. M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1139-1150.

28

Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2·- and OH· radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A 2007, 325, 105-111.

29

Attri, P.; Kim, Y. H.; Park, D. H.; Park, J. H.; Hong, Y. J.; Uhm, H. S.; Kim, K. N.; Fridman, A.; Choi, E. H. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 2015, 5, 9332.

30

Craig, M. J.; Coulter, G.; Dolan, E.; Soriano-López, J.; Mates-Torres, E.; Schmitt, W.; García-Melchor, M. Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat. Commun. 2019, 10, 4993.

31

Ullman, A. M.; Brodsky, C. N.; Li, N.; Zheng, S. L.; Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 2016, 138, 4229-4236.

32

Fabbri, E.; Schmidt, T. J. Oxygen evolution reaction—The enigma in water electrolysis. ACS Catal. 2018, 8, 9765-9774.

33

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457-465.

34

Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z. Z.; Oellers, T.; Fruchter, L. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018, 1, 508-515.

35

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329-338.

36

Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O'Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.

37

Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623-5630.

38

Lee, C. H.; Jun, B.; Lee, S. U. Metal-free oxygen evolution and oxygen reduction reaction bifunctional electrocatalyst in alkaline media: From mechanisms to structure-catalytic activity relationship. ACS Sustain. Chem. Eng. 2018, 6, 4973-4980.

39

Zhang, Y. C.; Zhang, H. N.; Liu, A. A.; Chen, C. C.; Song, W. J.; Zhao, J. C. Rate-limiting O-O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 2018, 140, 3264-3269.

40

Zhang, M.; Frei, H. Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. Annu. Rev. Phys. Chem. 2017, 68, 209-231.

41

Makoto, E.; Shohachi, K.; Shuichi, K.; Tetsuro, S. Temperature programmed desorption study of water adsorbed on metal oxides. I. Anatase and rutile. Bull. Chem. Soc. Jpn. 1978, 51, 3144-3149.

42

Lindan, P. J. D.; Harrison, N. M.; Gillan, M. J. Mixed dissociative and molecular adsorption of water on the rutile (110) surface. Phys. Rev. Lett. 1998, 80, 762-765.

43

Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 1998, 81, 2954-2957.

44

Yamamoto, S.; Kendelewicz, T.; Newberg, J. T.; Ketteler, G.; Starr, D. E.; Mysak, E. R.; Andersson, K. J.; Ogasawara, H.; Bluhm, H.; Salmeron, M. et al. Water adsorption on α-Fe2O3 (0001) at near ambient conditions. J. Phys. Chem. C 2010, 114, 2256-2266.

45

Albanese, E.; Di Valentin, C.; Pacchioni, G. H2O adsorption on WO3 and WO3-x (001) surfaces. ACS Appl. Mater. Interfaces 2017, 9, 23212-23221.

46

Zhang, L.; Wen, B.; Zhu, Y. N.; Chai, Z. W.; Chen, X. G.; Chen, M. Y. First-principles calculations of water adsorption on perfect and defect WO3 (001). Comput. Mater. Sci. 2018, 150, 484-490.

47

Oshikiri, M.; Boero, M. Water molecule adsorption properties on the BiVO4 (100) surface. J. Phys. Chem. B 2006, 110, 9188-9194.

48

Li, P.; Chen, X. Y.; He, H. C.; Zhou, X.; Zhou, Y.; Zou, Z. G. Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity. Adv. Mater. 2018, 30, 1703119.

49

Hurtado-Aular, O.; Vidal, A. B.; Sierraalta, A.; Añez, R. Periodic DFT study of water adsorption on m-WO3(001), m-WO3(100), h-WO3(001) and h-WO3(100). Role of hydroxyl groups on the stability of polar hexagonal surfaces. Surf. Sci. 2020, 694, 121558.

50

Sivasankar, N.; Weare, W. W.; Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 2011, 133, 12976-12979.

51

Zhang, M.; de Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 2014, 6, 362-367.

52

Zandi, O.; Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 2016, 8, 778-783.

53

Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639-2645.

54
Lang, C. C.; Li, J. Y.; Yang, K. R.; Wang, Y. X.; He, D.; Thorne, J. E.; Croslow, S.; Dong, Q.; Zhao, Y. Y.; Prostko, G. et al. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem, in press, DOI: 10.1016/j.chempr.2021.03.015.https://doi.org/10.1016/j.chempr.2021.03.015
DOI
55

Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 2013, 4, 2724-2734.

56

Kafizas, A.; Ma, Y. M.; Pastor, E.; Pendlebury, S. R.; Mesa, C.; Francàs, L.; Le Formal, F.; Noor, N.; Ling, M.; Sotelo-Vazquez, C. et al. Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis. ACS Catal. 2017, 7, 4896-4903.

57

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

58

Fang, Y. H.; Liu, Z. P. Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 2014, 4, 4364-4376.

59

Zhang, J. M.; Tao, H. B.; Kuang, M.; Yang, H. B.; Cai, W. Z.; Yan, Q. Y.; Mao, Q.; Liu, B. Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 2020, 10, 8597-8610.

60

Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408-413.

61
Peter, L. Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: Principles and techniques. In Photo-electrochemical Water Splitting: Materials, Processes and Architectures; Lewerenz, H. J.; Peter, L., Eds.; The Royal Society of Chemistry: Cambridge, 2013; pp 19-51.https://doi.org/10.1039/9781849737739-00019
DOI
62

Le Formal, F.; Pastor, E.; Tilley, S. D.; Mesa, C. A.; Pendlebury, S. R.; Grätzel, M.; Durrant, J. R. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 2015, 137, 6629-6637.

63

Ma, Y. M.; Mesa, C. A.; Pastor, E.; Kafizas, A.; Francàs, L.; Le Formal, F.; Pendlebury, S. R.; Durrant, J. R. Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode. ACS Energy Lett. 2016, 1, 618-623.

64

Mesa, C. A.; Francàs, L.; Yang, K. R.; Garrido-Barros, P.; Pastor, E.; Ma, Y. M.; Kafizas, A.; Rosser, T. E.; Mayer, M. T.; Reisner, E. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 2020, 12, 82-89.

65

Li, J. G.; Wan, W. C.; Triana, C. A.; Chen, H.; Zhao, Y. G.; Mavrokefalos, C. K.; Patzke, G. R. Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation. Nat. Commun. 2021, 12, 255.

66

Li, J. G.; Wan, W. C.; Triana, C. A.; Novotny, Z.; Osterwalder, J.; Erni, R.; Patzke, G. R. Dynamic role of cluster cocatalysts on molecular photoanodes for water oxidation. J. Am. Chem. Soc. 2019, 141, 12839-12848.

67

Zhang, Z. J.; Nagashima, H.; Tachikawa, T. Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angew. Chem. , Int. Ed. 2020, 59, 9047- 9054.

68

Francàs, L.; Corby, S.; Selim, S.; Lee, D.; Mesa, C. A.; Godin, R.; Pastor, E.; Stephens, I. E. L.; Choi, K. S.; Durrant, J. R. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 2019, 10, 5208.

69

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37-46.

70

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70-81.

71

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83-89.

72

Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872-9879.

73

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.

74

Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521-13530.

75

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

76

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014-3023.

77

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751-756.

78

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724-761.

79

Hellman, A.; Iandolo, B.; Wickman, B.; Grönbeck, H.; Baltrusaitis, J. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles. Surf. Sci. 2015, 640, 45-49.

80

Li, Y. F.; Liu, Z. P.; Liu, L. L.; Gao, W. G. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J. Am. Chem. Soc. 2010, 132, 13008-13015.

81

Hu, J.; Chen, W.; Zhao, X.; Su, H. B.; Chen, Z. Anisotropic electronic characteristics, adsorption, and stability of low-index BiVO4 surfaces for photoelectrochemical applications. ACS Appl. Mater. Interfaces 2018, 10, 5475-5484.

82

Yang, J. X.; Wang, D. E.; Zhou, X.; Li, C. A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem. —Eur. J. 2013, 19, 1320-1326.

83

Zhang, X. Q.; Klaver, P.; van Santen, R.; van de Sanden, M. C. M.; Bieberle-Hütter, A. Oxygen evolution at hematite surfaces: The impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 2016, 120, 18201-18208.

84

Zhang, X. Q.; Cao, C. L.; Bieberle-Hütter, A. Orientation sensitivity of oxygen evolution reaction on hematite. J. Phys. Chem. C 2016, 120, 28694-28700.

85

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.

86

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870-877.

87

Gauthier, J. A.; Dickens, C. F.; Chen, L. D.; Doyle, A. D.; Nørskov, J. K. Solvation effects for oxygen evolution reaction catalysis on IrO2(110). J. Phys. Chem. C 2017, 121, 11455-11463.

88

Kenmoe, S.; Spohr, E. Photooxidation of water on pristine, S- and N-doped TiO2(001) nanotube surfaces: A DFT + U study. J. Phys. Chem. C 2019, 123, 22691-22698.

89

Yang, M. J.; He, H. C.; Liao, A. Z.; Huang, J.; Tang, Y.; Wang, J.; Ke, G. L.; Dong, F. Q.; Yang, L.; Bian, L. et al. Boosted water oxidation activity and kinetics on BiVO4 photoanodes with multihigh-index crystal facets. Inorg. Chem. 2018, 57, 15280-15288.

90

Nguyen, M. T.; Piccinin, S.; Seriani, N.; Gebauer, R. Photo-oxidation of water on defective hematite(0001). ACS Catal. 2015, 5, 715-721.

91

Li, X. N.; Wang, H. Y.; Yang, H. B.; Cai, W. Z.; Liu, S.; Liu, B. In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods 2018, 2, 1700395.

92

Deng, J. J.; Zhang, Q. Z.; Lv, X. X.; Zhang, D.; Xu, H.; Ma, D. L.; Zhong, J. Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 2020, 5, 975-993.

93

Timoshenko, J.; Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882-961.

94

Joya, K. S.; Sala, X. In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: Spectroelectrochemical characterization of water oxidation electrocatalysts. Phys. Chem. Chem. Phys. 2015, 17, 21094-21103.

95

Deng, Y. L.; Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 2017, 7, 7873-7889.

96

Qiu, Z.; Ma, Y.; Edvinsson, T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy 2019, 66, 104118.

97

Rao, R. R.; Kolb, M. J.; Giordano, L.; Pedersen, A. F.; Katayama, Y.; Hwang, J.; Mehta, A.; You, H.; Lunger, J. R.; Zhou, H. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 2020, 3, 516-525.

98

Cheng, X.; Fabbri, E.; Yamashita, Y.; Castelli, I. E.; Kim, B.; Uchida, M.; Haumont, R.; Puente-Orench, I.; Schmidt, T. J. Oxygen evolution reaction on perovskites: A multieffect descriptor study combining experimental and theoretical methods. ACS Catal. 2018, 8, 9567-9578.

99

Wang, D.; Sheng, T.; Chen, J. F.; Wang, H. F.; Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 2018, 1, 291-299.

100

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

101

Ma, P. Y.; Zhang, S. C.; Zhang, M. T.; Gu, J. F.; Zhang, L.; Sun, Y. C.; Ji, W.; Fu, Z. Y. Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci. China Mater. 2020, 63, 2613-2619.

Publication history
Copyright
Rights and permissions

Publication history

Received: 18 March 2021
Revised: 06 May 2021
Accepted: 19 May 2021
Published: 07 June 2021
Issue date: October 2021

Copyright

© 2021

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Return