Journal Home > Volume 14 , Issue 10

Broad absorption spectra with efficient generation and separation of available charge carriers are indispensable requirements for promising semiconductor-based photocatalysts to achieve the ultimate goal of solar-to-fuel conversion. Here, Cu3-xSnS4 (x = 0-0.8) with copper vacancies have been prepared and fabricated via solvothermal process. The obtained copper vacancy materials have extended light absorption from ultraviolet to near-infrared-Ⅱ region for its significant plasmonic effects. Time-resolved photoluminescence shows that the vacancies can simultaneously optimize charge carrier dynamics to boost the generation of long-lived active electrons for photocatalytic reduction. Density functional theory calculations and electrochemical characterizations further revealed that copper vacancies in Cu3-xSnS4 tend to enhance hydrogen's adsorption energy with an obvious decrease in its H2 evolution reaction (HER) overpotential. Furthermore, without any loadings, the H2 production rate was measured to be 9.5 mmol·h-1·g-1. The apparent quantum yield was measured to be 27% for wavelength λ > 380 nm. The solar energy conversion efficiency was measured to be 6.5% under visible-near infrared (vis-NIR) (λ > 420 nm).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Copper vacancy activated plasmonic Cu3-xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential

Show Author's information Nazakat Ali1Tsegaye Tadesse Tsega1Yucai Cao2Saghir Abbas1Wenjing Li1Asma Iqbal1Hira Fazal1Zhiling Xin3( )Jiantao Zai1( )Xuefeng Qian1( )
Shanghai Electrochemical Energy Devices Research Center,School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai,200240,China;
State Key Laboratory of Polyolefins and Catalysis,Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd.),Shanghai,200062,China;
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power,Shanghai University of Electric Power, 2103 Pingliang Road,Shanghai,200090,China;

Abstract

Broad absorption spectra with efficient generation and separation of available charge carriers are indispensable requirements for promising semiconductor-based photocatalysts to achieve the ultimate goal of solar-to-fuel conversion. Here, Cu3-xSnS4 (x = 0-0.8) with copper vacancies have been prepared and fabricated via solvothermal process. The obtained copper vacancy materials have extended light absorption from ultraviolet to near-infrared-Ⅱ region for its significant plasmonic effects. Time-resolved photoluminescence shows that the vacancies can simultaneously optimize charge carrier dynamics to boost the generation of long-lived active electrons for photocatalytic reduction. Density functional theory calculations and electrochemical characterizations further revealed that copper vacancies in Cu3-xSnS4 tend to enhance hydrogen's adsorption energy with an obvious decrease in its H2 evolution reaction (HER) overpotential. Furthermore, without any loadings, the H2 production rate was measured to be 9.5 mmol·h-1·g-1. The apparent quantum yield was measured to be 27% for wavelength λ > 380 nm. The solar energy conversion efficiency was measured to be 6.5% under visible-near infrared (vis-NIR) (λ > 420 nm).

Keywords: photocatalysis, hydrogen evolution reaction, plasmon, Cu3-xSnS4, copper vacancy

References(52)

1

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

2

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.

3

Wang, X. T.; Liow, C.; Bisht, A.; Liu, X. F.; Sum, T. C.; Chen, X. D.; Li, S. Z. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv. Mater. 2015, 27, 2207-2214.

4

Zhang, Z. Y.; Huang, Y. Z.; Liu, K. C.; Guo, L. J.; Yuan, Q.; Dong, B. Multichannel-improved charge-carrier dynamics in well-designed hetero-nanostructural plasmonic photocatalysts toward highly efficient solar-to-fuels conversion. Adv. Mater. 2015, 27, 5906-5914.

5

Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem. , Int. Ed. 2016, 55, 6396-6400.

6

Kawashima, K.; Hojamberdiev, M.; Wagata, H.; Yubuta, K.; Domen, K.; Teshima, K. Protonated oxide, nitrided, and reoxidized K2La2Ti3O10 crystals: Visible-light-induced photocatalytic water oxidation and fabrication of their nanosheets. ACS Sustainable Chem. Eng. 2017, 5, 232-240.

7

Thaweesak, S.; Lyu, M.; Peerakiatkhajohn, P.; Butburee, T.; Luo, B.; Chen, H. J.; Wang, L. Z. Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Appl. Catal. B 2017, 202, 184-190.

8

Iwase, A.; Kato, H.; Kudo, A. The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO3 powder. ChemSusChem 2009, 2, 873-877.

9

Yang, Y. Q.; Sun, C. H.; Wang, L. Z.; Liu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H. M. Constructing a metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution. Adv. Energy Mater. 2014, 4, 1400057.

10

Kim, H. N.; Kim, T. W.; Kim, I. Y.; Hwang, S. J. Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: Porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv. Funct. Mater. 2011, 21, 3111-3118.

11

Niezgoda, J. S.; Yap, E.; Keene, J. D.; McBride, J. R.; Rosenthal, S. J. Plasmonic CuxInyS2 quantum dots make better photovoltaics than their nonplasmonic counterparts. Nano Lett. 2014, 14, 3262-3269.

12

Kale, B. B.; Baeg, J. O.; Lee, S. M.; Chang, H.; Moon, S. J.; Lee, C. W. CdIn2S4 nanotubes and "Marigold" nanostructures: A visible- light photocatalyst. Adv. Funct. Mater. 2006, 16, 1349-1354.

13

Bhirud, A.; Chaudhari, N.; Nikam, L.; Sonawane, R.; Patil, K.; Baeg, J. O.; Kale, B. Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int. J. Hydrogen Energy 2011, 36, 11628-11639.

14

Regulacio, M. D.; Han, M. Y. Multinary Ⅰ-Ⅲ-Ⅵ2 and I2-Ⅱ-Ⅳ-Ⅵ4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511-519.

15

Ng, B. J.; Putri, L. K.; Kong, X. Y.; Teh, Y. W.; Pasbakhsh, P.; Chai, S. P. Z-scheme photocatalytic systems for solar water splitting. Adv. Sci. 2020, 7, 1903171.

16

Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920-4935.

17

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid- state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782-786.

18

Yun, H. J.; Lee, H.; Kim, N. D.; Lee, D. M.; Yu, S.; Yi, J. A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 2011, 5, 4084-4090.

19

Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883-16890.

20

Li, X.; Yu, J. X.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485-2534.

21

Jin, J.; Yu, J. G.; Guo, D. P.; Cui, C.; Ho, W. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 2015, 11, 5262-5271.

22

Xu, D. F.; Cheng, B.; Cao, S. W.; Yu, J. G. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal. B 2015, 164, 380-388.

23

Li, H. T.; Liu, R. H.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J. Mater. Chem. 2012, 22, 17470-17475.

24

Nishijima, Y.; Ueno, K.; Kotake, Y.; Murakoshi, K.; Inoue, H.; Misawa, H. Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 2012, 3, 1248-1252.

25

Wang, G.; Huang, B. B.; Ma, X. C.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H. Cu2(OH)PO4, a near-infrared-activated photocatalyst. Angew. Chem. , In. Ed. 2013, 52, 4810-4813.

26

Manwar, N. R.; Chilkalwar, A. A.; Nanda, K. K.; Chaudhary, Y. S.; Subrt, J.; Rayalu, S. S.; Labhsetwar, N. K. Ceria supported Pt/PtO- nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation. ACS Sustainable Chem. Eng. 2016, 4, 2323-2332.

27

Kuo, T. R.; Liao, H. J.; Chen, Y. T.; Wei, C. Y.; Chang, C. C.; Chen, Y. C.; Chang, Y. H.; Lin, J. C.; Lee, Y. C.; Wen, C. Y. et al. Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 2018, 20, 1640-1647.

28

Scotognella, F.; Della Valle, G.; Srimath Kandada, A. R.; Dorfs, D.; Zavelani-Rossi, M.; Conforti, M.; Miszta, K.; Comin, A.; Korobchevskaya, K.; Lanzani, G. et al. Plasmon dynamics in colloidal Cu2-x Se nanocrystals. Nano Lett. 2011, 11, 4711-4717.

29

Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575-10636.

30

Kriegel, I.; Jiang, C. Y.; Rodríguez-Fernández, J.; Schaller, R. D.; Talapin, D. V.; Da Como, E.; Feldmann, J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 1583-1590.

31

Wang, X. T.; Liow, C.; Qi, D. P.; Zhu, B. W.; Leow, W. R.; Wang, H.; Xue, C.; Chen, X. D.; Li, S. Z. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv. Mater. 2014, 26, 3506-3512.

32

Cai, X. Y.; Zhu, M. S.; Elbanna, O. A.; Fujitsuka, M.; Kim, S.; Mao, L.; Zhang, J. Y.; Majima, T. Au nanorod photosensitized La2Ti2O7 nanosteps: Successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal. 2018, 8, 122-131.

33

Sousa-Castillo, A.; Comesaña-Hermo, M.; Rodríguez-González, B.; Pérez-Lorenzo, M. S.; Wang, Z. M.; Kong, X. T.; Govorov, A. O.; Correa-Duarte, M. A. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO2 nanoarchitectures. J. Phys. Chem. C 2016, 120, 11690- 11699.

34

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298-4308.

35

Kharkwal, A.; Sharma, S. N.; Jain, K.; Singh, A. K. A solvothermal approach for the size-, shape- and phase-controlled synthesis and properties of CuInS2. Mater. Chem. Phys. 2014, 144, 252-262.

36

Chen, F. K.; Zai, J. T.; Xu, M.; Qian, X. F. 3D-hierarchical Cu3SnS4 flowerlike microspheres: Controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. J. Mater. Chem. A 2013, 1, 4316-4323.

37

Auyoong, Y. L.; Yap, P. L.; Huang, X.; Abd Hamid, S. B. Optimization of reaction parameters in hydrothermal synthesis: A strategy towards the formation of CuS hexagonal plates. Chem. Cen. J. 2013, 7, 67.

38

Wang, Y.; Liu, F. Y.; Ji, Y.; Yang, M.; Liu, W.; Wang, W.; Sun, Q. S.; Zhang, Z. Q.; Zhao, X. D.; Liu, X. Y. Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans. 2015, 44, 10431-10437.

39

Cheng, Z. G.; Wang, S. Z.; Wang, Q.; Geng, B. Y. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 2010, 12, 144-149.

40

Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.

41

Liu, Q.; Jiang, L.; Guo, L. Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate. Small 2014, 10, 48-51.

42

Kanai, A.; Araki, H.; Takeuchi, A.; Katagiri, H. Annealing temperature dependence of photovoltaic properties of solar cells containing Cu2SnS3 thin films produced by co-evaporation. Phys. Status Solidi B 2015, 252, 1239-1243.

43

Tao, F. J.; Zhang, Y. L.; Yin, K.; Cao, S. J.; Chang, X. T.; Lei, Y. H.; Wang, D. S.; Fan, R. H.; Dong, L. H.; Yin, Y. S. et al. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation. ACS Appl. Mater. Interfaces 2018, 10, 35154- 35163.

44

van Duren, S.; Ren, Y.; Scragg, J.; Just, J.; Unold, T. In situ monitoring of Cu2ZnSnS4 absorber formation with Raman spectroscopy during Mo/Cu2SnS3/ZnS thin-film stack annealing. IEEE J. Photovolt. 2017, 7, 906-912.

45

Padam, G. K.; Malhotra, G. L.; Gupta, S. K. Study of intrinsic defects in vacuum/air annealed CuInSe2. Solar Energy Mater. 1991, 22, 303-318.

46

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

47

Choudhari, N. J.; Raviprakash, Y.; Bellarmine, F.; Rao, M. R.; Pinto, R. Investigation on the sulfurization temperature dependent phase and defect formation of sequentially evaporated Cu-rich CZTS thin films. Solar Energy 2020, 201, 348-361.

48

Xu, M.; Ye, T. N.; Dai, F.; Yang, J. D.; Shen, J. M.; He, Q. Q.; Chen, W. L.; Liang, N.; Zai, J. T.; Qian, X. F. Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. ChemSusChem 2015, 8, 1218-1225.

49

Zhang, Z. Y.; Huang, J. D.; Fang, Y. R.; Zhang, M. Y.; Liu, K. C.; Dong, B. A nonmetal plasmonic Z-scheme photocatalyst with UV-to NIR-driven photocatalytic protons reduction. Adv. Mater. 2017, 29, 1606688.

50

Yan, C.; Huang, J. J.; Sun, K. W.; Johnston, S.; Zhang, Y. F.; Sun, H.; Pu, A. B.; He, M. R.; Liu, F. Y.; Eder, K. et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 2018, 3, 764-772.

51

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575-6578.

52

Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653-2659.

File
12274_2021_3604_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 January 2021
Revised: 07 May 2021
Accepted: 19 May 2021
Published: 09 June 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work is supported by the Science and Technology Commission of Shanghai Municipality (Nos. 19JC1412600, 20520741400, and 18230743400) and the National Natural Science Foundation of China (Nos. 21771124 and 21671134).

Return