Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Neurologic function implemented soft organic electronic skin holds promise for wide range of applications, such as skin prosthetics, neurorobot, bioelectronics, human-robotic interaction (HRI), etc. Here, we report the development of a fully rubbery synaptic transistor which consists of all-organic materials, which shows unique synaptic characteristics existing in biological synapses. These synaptic characteristics retained even under mechanical stretch by 30%. We further developed a neurological electronic skin in a fully rubbery format based on two mechanoreceptors (for synaptic potentiation or depression) of pressure-sensitive rubber and an all-organic synaptic transistor. By converting tactile signals into Morse Code, potentiation and depression of excitatory postsynaptic current (EPSC) signals allow the neurological electronic skin on a human forearm to communicate with a robotic hand. The collective studies on the materials, devices, and their characteristics revealed the fundamental aspects and applicability of the all-organic synaptic transistor and the neurological electronic skin.
Thompson, W. Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. Nature 1983, 302, 614–616.
Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.
Shim, H.; Sim, K.; Ershad, F.; Yang, P. Y.; Thukral, A.; Rao, Z. Y.; Kim, H. J.; Liu, Y. H.; Wang, X.; Gu, G. Y. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 2019, 5, eaax4961.
Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.
Andreae, L. C.; Burrone, J. The role of spontaneous neurotransmission in synapse and circuit development. J. Neurosci. Res. 2018, 96, 354–359.
Kim, S.; Lee, B.; Reeder, J. T.; Seo, S. H.; Lee, S. U.; Hourlier- Fargette, A.; Shin, J.; Sekine, Y.; Jeong, H.; Oh, Y. S. et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 27906–27915.
Rogers, J. A. Nanomesh on-skin electronics. Nat. Nanotechnol. 2017, 12, 839–840.
Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.
Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.
Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.
Akbari, M. K.; Zhuiykov, S. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 2019, 10, 3873.
Zhang, X. M.; Zhuo, Y.; Luo, Q.; Wu, Z. H.; Midya, R.; Wang, Z. R.; Song, W. H.; Wang, R.; Upadhyay, N. K.; Fang, Y. L. et al. An artificial spiking afferent nerve based on mott memristors for neurorobotics. Nat. Commun. 2020, 11, 51.
Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; Van De Burgt, Y. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973.
Sim, K.; Rao, Z. Y.; Zou, Z. N.; Ershad, F.; Lei, J. M.; Thukral, A.; Chen, J.; Huang, Q. A.; Xiao, J. L.; Yu, C. J. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 2019, 5, eaav9653.
Wan, C. J.; Cai, P. Q.; Wang, M.; Qian, Y.; Huang, W.; Chen, X. D. Artificial sensory memory. Adv. Mater. 2020, 32, 1902434.
Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.
Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepúlveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.
Zang, Y. P.; Shen, H. G.; Huang, D. Z.; Di, C. A.; Zhu, D. B. A dual- organic-transistor-based tactile-perception system with signal-processing functionality. Adv. Mater. 2017, 29, 1606088.
Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.
Ruiz, C.; García-Frutos, E. M.; Hennrich, G.; Gómez-Lor, B. Organic semiconductors toward electronic devices: High mobility and easy processability. J. Phys. Chem. Lett. 2012, 3, 1428–1436.
Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385.
Lanzani, G. Organic electronics meets biology. Nat. Mater. 2014, 13, 775–776.
Sekitani, T.; Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 22, 2228–2246.
Lipomi, D. J.; Bao, Z. N. Stretchable and ultraflexible organic electronics. MRS Bull. 2017, 42, 93–97.
Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455–4461.
Kim, H. J.; Sim, K.; Thukral, A.; Yu, C. J. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 2017, 3, e1701114.
Molina-Lopez, F.; Gao, T. Z.; Kraft, U.; Zhu, C.; Öhlund, T.; Pfattner, R.; Feig, V. R.; Kim, Y.; Wang, S.; Yun, Y. et al. Inkjet- printed stretchable and low voltage synaptic transistor array. Nat. Commun. 2019, 10, 2676.
Yang, Q.; Yang, H. H.; Lv, D. X.; Yu, R. J.; Li, E. L.; He, L. H.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. High-performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681.
Gao, W. T.; Zhu, L. Q.; Tao, J.; Wan, D. Y.; Xiao, H.; Yu, F. Dendrite integration mimicked on starch-based electrolyte-gated oxide dendrite transistors. ACS Appl. Mater. Interfaces 2018, 10, 40008–40013.
Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification- activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.
Wei, H. H.; Shi, R. C.; Sun, L.; Yu, H. Y.; Gong, J. D.; Liu, C.; Xu, Z. P.; Ni, Y.; Xu, J. L.; Xu, W. T. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 2021, 12, 1068.
Wang, X. M.; Yan, Y. J.; Li, E. L.; Liu, Y. Q.; Lai, D. X.; Lin, Z. X.; Liu, Y.; Chen, H. P.; Guo, T. L. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 2020, 75, 104952.
Yu, F.; Zhu, L. Q.; Gao, W. T.; Fu, Y. M.; Xiao, H.; Tao, J.; Zhou, J. M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886.
Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2d van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.
Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.
Gu, J. H.; Park, M.; Kang, K.; Shin, H. C. Morse code representation using emg signals. In 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 2019, pp 1059–1061.