Journal Home > Volume 15 , Issue 2

Chirality is ubiquitous in nature and manifested at various scale from subatom to galaxy. Fractal geometry is also very popular and active in the world. However, there are few reports on the concept of combining fractal patterns and chiral structures in self- assembled systems. It was found that tree-shaped fractal patterns could be self-assembled from the N-[(9H-fluoren-9-ylmethoxy) carbonyl] protected glutamic acid (Fmoc-Glu) and zinc-porphyrin (ZnTPyP). The fractal pattern was composed of nanorod aggregate arranged in a spiral fractal way, in which the nanorods were stacked one-by-one in a single direction. The patterns started with the formation of initial nucleon and growing, during which the diffusion limited aggregation (DLA) mechanism led to the fractal patterns. Interestingly, the spiral packing and their branches were closely related to the absolute configuration of Fmoc-Glu that anticlockwise and clockwise arrangement for L-Fmoc-Glu/ZnTPyP and D-Fmoc-Glu/ZnTPyP, respectively. Our work provides a new finding on the spiral fractal pattern via hierarchical self-assembly.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spiral fractal patterns via hierarchical assembly

Show Author's information Li Zhang1( )Ming Deng1Yu Duan2Xin Wen1Yuqian Jiang3Hejin Jiang1Yuqiang Ma2Minghua Liu1
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of SciencesBeijing 100190 China
National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures Nanjing UniversityNanjing 210093 China
National Center for Nanoscience and TechnologyBeijing 100190 China

Abstract

Chirality is ubiquitous in nature and manifested at various scale from subatom to galaxy. Fractal geometry is also very popular and active in the world. However, there are few reports on the concept of combining fractal patterns and chiral structures in self- assembled systems. It was found that tree-shaped fractal patterns could be self-assembled from the N-[(9H-fluoren-9-ylmethoxy) carbonyl] protected glutamic acid (Fmoc-Glu) and zinc-porphyrin (ZnTPyP). The fractal pattern was composed of nanorod aggregate arranged in a spiral fractal way, in which the nanorods were stacked one-by-one in a single direction. The patterns started with the formation of initial nucleon and growing, during which the diffusion limited aggregation (DLA) mechanism led to the fractal patterns. Interestingly, the spiral packing and their branches were closely related to the absolute configuration of Fmoc-Glu that anticlockwise and clockwise arrangement for L-Fmoc-Glu/ZnTPyP and D-Fmoc-Glu/ZnTPyP, respectively. Our work provides a new finding on the spiral fractal pattern via hierarchical self-assembly.

Keywords: self-assembly, porphyrin, fractal, chiral, spiral

References(47)

1

Mandelbrot, B. B. Fractals: Form, chance and dimension. W. H. Freeman and Co. : New York, 1977.

2

Mandelbrot, B. B. The fractal geometry of nature. W. H. Freeman and Co. : New York, 1982.

3

Young, I. D.; Fraserm, J. S. Biomaterials in non-integer dimensions. Nat. Chem. 2019, 11, 599–600.

4

Hyodo, K.; Sawaguchi, H.; Yamamoto, Y.; Nonomura, Y.; Mayama, H.; Yokojima, S.; Nakamura, S.; Uchida, K. Fractal surfaces of molecular crystals mimicking lotus leaf with phototunable double roughness structures. J. Am. Chem. Soc. 2016, 138, 10299–10303.

5

Addadi, L.; Weiner, S. Biomineralization-crystals, asymmetry and life. Nature 2001, 411, 753–755.

6

Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self- assembled systems. Chem. Rev. 2015, 115, 7304–7397.

7

Kennedy, D. What is the origin of homochirality in Nature. Science 2005, 309, 19–19.

8

Zhang, L.; Wang, T. Y.; Shen, Z. C.; Liu, M. H. Chiral nano­architectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv. Mater. 2016, 28, 1044–1059.

9

Ariga, K.; Mori, T.; Kitao, T.; Uemura, T., Supramolecular chiral nanoarchitectonics. Adv Mater 2020, 32 (41), 1905657.

10

Zhang, M.; Grossman, D.; Danino, D.; Sharon, E. Shape and fluctuations of frustrated self-assembled nano ribbons. Nat. Commun. 2019, 10, 3565.

11

Wang, Y. F.; Qi, W.; Huang, R. L.; Yang, X. J.; Wang, M. F.; Su, R. X.; He, Z. M. Rational design of chiral nanostructures from self- assembly of a ferrocene-modified dipeptide. J. Am. Chem. Soc. 2015, 137, 7869–7880.

12

Christopher, D. J.; Simmons, H. T. D.; Horner, K. E.; Liu, K.; Thompson, R. L.; Steed, J. W. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 2019, 11, 375–381.

13

Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D. D.; Kitamoto, Y.; Hollamby, M. J.; Smith, A. J.; Dagleish, R.; Mahmoudi, N.; Pesce, L.; Perego, C.; Pavan, G. M.; Yagai, S. Self- assembled poly-catenanes from supramolecular toroidal building blocks. Nature 2020, 583, 400–405.

14

Sun, B. Kim, Y.; Wang, Y.; Wang, H.; Kim, J.; Liu, X.; Lee, M. Homochiral porous nanosheets for enantiomer sieving. Nat. Mater. 2018, 17, 599–604.

15

Hu, L.; Li, K.; Shang, W.; Zhu, X.; Liu, M. Emerging cubic chirality in gamma CD-MOF for fabricating circularly polarized luminescent crystalline materials and the size effect. Angew. Chem., Int. Ed. 2020, 59, 4953–4958.

16

Ouyang, G.; Ji, L.; Jiang, Y.; Wurthner, F.; Liu, M. Self-assembled Mobius strips with controlled helicity. Nat. Commun. 2020, 11, 5910.

17

Duan, Y.; Liu, X.; Han, L.; Asahina, S.; Xu, D.; Cao, Y.; Yao, Y.; Che, S. Optically active chiral CuO "nanoflowers". J. Am. Chem. Soc. 2014, 136, 7193–7196.

18

Cheng, G.; Wang, Y.; Liu, K.; Yu, J., Entropy-driven self-assembly of chiral nematic liquid crystalline phases of AgNR@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition. Nano Research 2018, 11(2), 1018–1028.

19

Du, Z. Guan, Y.; Ding, C.; Gao, N.; Ren, J.; Qu, X., Cross- fibrillation of insulin and amyloid β on chiral surfaces: Chirality affects aggregation kinetics and cytotoxicity. Nano Research 2018, 11(8), 4102–4110.

20

Klös, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S., Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Research 2019, 12(7), 1635–1642.

21

Tseng, M. L.; Lin, Z. -H.; Kuo, H. Y.; Huang, T. -T.; Huang, Y. -T.; Chung, T. L.; Chu, C.; Huang, J. -S.; Tsai, D. P., Stress-induced 3d chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Adv. Optical Mater. 2019, 7, 1900617.

22

van Herrikhuyzen, J.; Janssen, R. A. J.; Meijer, E. W.; Meskers, S. C. J.; Schenning, A. Fractal-like self-assembly of oligo (p-phenylene vinylene) capped gold nanoparticles. J. Am. Chem. Soc. 2006, 128, 686–687.

23

Sun, S. T.; Xu, S. J.; Zhang, W. D.; Wu, P. Y.; Zhang, W.; Zhu, X. L. Cooperative self-assembly and crystallization into fractal patterns by PNIPAM-based nonlinear multihydrophilic block copolymers under alkaline conditions. Poly. Chem. 2013, 4, 5800–5809.

24

Khatun, S.; Singh, A.; Maji, S.; Maiti, T. K.; Pawar, N.; Gupta, A. N. Fractal self-assembly and aggregation of human amylin. Soft Matter 2020, 16, 3143–3153.

25

Bracha, D.; Bar-Ziv, R. H. Dendritic and nanowire assemblies of condensed DNA polymer brushes. J. Am. Chem. Soc. 2014, 136, 4945–4953.

26

Newkome, G. R.; Wang, P. S.; Moorefied, C. N.; Cho, T. J.; Mohapatra, P. P.; Li, S. N.; Hwang, S. H.; Lukoyanova, O.; Echegoyen, L.; Palagallo, J. A. Nanoassembly of a fractal polymer: A molecular "Sierpinski hexagonal gasket". Science 2006, 312, 1782–1785.

27

Solodkov, N. V.; Shim, J. U.; Jones, J. C. Self-assembly of fractal liquid crystal colloids. Nat. Commun. 2019, 10, 198.

28

Liu, R. Y.; Kochovski, Z.; Li, L.; Yin, Y. W.; Yang, J.; Yang, G.; Tao, G. Q.; Xu, A. Q.; Zhang, E. S.; Ding, H. M.; Lu, Y.; Chen, G. S.; Jiang, M. Fabrication of pascal-triangle lattice of proteins by inducing ligand strategy. Angew. Chem., Int. Ed. 2020, 59, 9617–9623.

29

Yang, M.; Song, W. J. Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nat. Commun. 2019, 10, 5545.

30

Hernandez, N. E.; Hansen, W. A.; Zhu, D.; Shea, M. E.; Khalid, M.; Manichev, V.; Putnins, M.; Chen, M. Y.; Dodge, A. G.; Yang, L.; Marrero-Berrios, I.; Banal, M.; Rechani, P.; Gustafsson, T.; Feldman, L. C.; Lee, S. H.; Wackett, L, P.; Dai, W.; Khare, S. D. Stimulus- responsive self-assembly of protein-based fractals by computational design. Nat. Chem. 2019, 11, 605–614.

31

Shang, J.; Wang, Y. F.; Chen, M.; Dai, J. X.; Zhou, X.; Kuttner, J. L.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Assembling molecular Sierpinski triangle fractals. Nat. Chem. 2015, 7, 389–393.

32

Zhang, X.; Li, N.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Xie, C.; Shen, Z. Y.; Lu, J. T.; Tang, H.; Peng, L. M.; Hou, S. M.; Wu, K.; Wang, Y. F. Controlling molecular growth between fractals and crystals on surfaces. Acs Nano 2015, 9, 11909–11915.

33

Wang, M.; Wang, C.; Hao, X. Q.; Liu, J. J.; Li, X. H.; Xu, C. L.; Lopez, A.; Sun, L. Y.; Song, M. P.; Yang, H. B.; Li, X. P. Hexagon Wreaths: Self-assembly of discrete supramolecular fractal architectures using multitopic terpyridine ligands. J. Am. Chem. Soc. 2014, 136, 6664–6671.

34

Wang, L.; Liu, R.; Gu, J. L.; Song, B.; Wang, H.; Jiang, X.; Zhang, K. R.; Han, X.; Hao, X. Q.; Bai, S.; Wang, M.; Li, X.; Xu, B.; Li, X. Self-Assembly of supramolecular fractals from generation 1 to 5. J. Am. Chem. Soc. 2018, 140, 14087–14096.

35

Sarkar, R.; Guo, K.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. One-step multicomponent self-assembly of a first-generation sierpinski triangle: from fractal design to chemical reality. Angew. Chem., Int. Ed. 2014, 53, 12182–12185.

36

Rastgoo-Lahrood, A.; Martsinovich, N.; Lischka, M.; Eichhorn, J.; Szabelski, P.; Nieckarz, D.; Strunskus, T.; Das, K.; Schmittel, M.; Heckl, W. M.; Lackinger, M. From Au-Thiolate chains to thioether sierpiriski triangles: the versatile surface chemistry of 1, 3, 5-Tris (4-mercaptophenyl)benzene on Au(111). Acs Nano 2016, 10, 10901– 10911.

37

Li, C.; Zhang, X.; Li, N.; Wang, Y.; Yang, J.; Gu, G.; Zhang, Y.; Hou, S.; Peng, L. M.; Wu, K.; Nieckarz, D.; Szabelski, P.; Tang, H.; Wang, Y. F. Construction of sierpinski triangles up to the fifth order. J. Am. Chem. Soc. 2017, 139, 13749–13753.

38

Hwang, R. Q.; Schroder, J.; Gunther, C.; Behm, R. J. Fractal growth of two-dimensional islands: Au on Ru(0001). Phys. Rev. Lett. 1991, 67, 3279–3282.

39

Nittmann, J. Fractal viscous fingering: Experiments and models. Physica A 1986, 140, 124–133.

40

Witten, T. A.; Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400–1403.

41

Witten, T. A.; Meakin, P. Diffusion-limited aggregation at multiple growth sites. Phys. Rev. B 1983, 28, 5632–5642.

42

Sun, W.; Wang, H.; Qi, D.; Wang, L.; Wang, K.; Kan, J. L.; Li, W.; Chen, Y.; Jiang, J. 5, 10, 15, 20-tetra(4-pyridyl)porphyrinato zinc coordination polymeric particles with different shapes and luminescent properties. Crystengcomm 2012, 14, 7780–7786.

43

Bai, F.; Sun, Z.; Wu, H.; Haddad, R. E.; Coker, E. N.; Huang, J.; Rodriguez, M. A.; Fan, H. One-Dimensional nanostructures through confined cooperative self-assembly. Nano Lett. 2011, 11, 5196–5200.

44

Gao, J.; He, Y.; Liu, F.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene- containing supramolecular side-chain polymer films for laser-induced surface relief gratings. Chem. Mater. 2007, 19, 3877–3881.

45

Deng, M.; Zhang, L.; Jiang, Y.; Liu, M. Role of achiral nucleobases in multicomponent chiral self-assembly: purine-triggered helix and chirality transfer. Angew. Chem., Int. Ed. 2016, 55, 15062–15066.

46

Bai, F.; Wu, H. M.; Haddad, R. E.; Sun, Z. C.; Schmitt, S. K.; Skocypec, V. R.; Fan, H. Y. Monodisperse porous nanodiscs with fluorescent and crystalline wall structure. Chem. Commun. 2010, 46, 4941–4943.

47

Jiang, W. G.; Pacella, M. S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R. M.; Gray, J. J.; Mckee, M. D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066.

File
12274_2021_3601_MOESM1_ESM.pdf (7.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2021
Revised: 16 May 2021
Accepted: 19 May 2021
Published: 26 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 21890734, 21890730, 21773260, and 21972150) and the Chinese Academy of Sciences (No. QYZDJSSW-SLH044).

Return