Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Photosensitized heterogeneous CO2 reduction (PHCR) has emerged as a promising means to convert CO2 into valuable chemicals, however, challenged by the relatively low carbonaceous product selectivity caused by the competing hydrogen evolution reaction (HER). Here, we report a PHCR system that couples Ru(bpy)32+ photosensitizer with {001} faceted LiCoO2 nanosheets photocatalyst to simultaneously yield 21.2 and 722 μmol·g−1·h−1 of CO, and 4.42 and 108 μmol·g−1·h−1 of CH4 under the visible light and the simulated sunlight irradiations, respectively, with completely suppressed HER. The experimental and theoretical studies reveal that the favored CO2 adsorption on the exposed Li sites on {001} faceted LiCoO2 surface is responsible for the completely suppressed HER.
Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products–closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048.
Peter, S. C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 2018, 3, 1557–1561.
Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244–254.
Shan, B.; Vanka, S.; Li, T. T.; Troian-Gautier, L.; Brennaman, M. K.; Mi, Z.; Meyer, T. J. Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nat. Energy 2019, 4, 290–299.
Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. 2012, 109, 15560–15564.
Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.
Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.
Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 126, 1052–1056.
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363.
Wang, Y.; Wang, S. B.; Lou, X. W. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 17236–17240.
Jiang, M.; Gao, Y. L.; Wang, Z. Y.; Ding, Z. X. Photocatalytic CO2 reduction promoted by a CuCo2O4 cocatalyst with homogeneous and heterogeneous light harvesters. Appl. Catal. B: Environ. 2016, 198, 180–188.
Su, P. P.; Iwase, K.; Harada, T.; Kamiya, K.; Nakanishi, S. Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem. Sci. 2018, 9, 3941–3947.
Li, C. H.; Tong, X.; Yu, P.; Du, W.; Wu, J.; Rao, H.; Wang, Z. M. Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 2019, 7, 16622–16642.
Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.
Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.
Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.
Wang, S. B.; Ding, Z. X.; Wang, X. C. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem. Commun. 2015, 51, 1517– 1519.
Wang, S. B.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.
Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF–67 as an efficient co-catalyst. Appl. Catal. B: Environ. 2017, 209, 476–482.
Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.
Yang, H. Z.; Yang, D. R.; Wang, X. POM-incorporated CoO nanowires for enhanced photocatalytic syngas production from CO2. Angew. Chem., Int. Ed. 2020, 59, 15527–15531.
Wang, Y.; Wang, S. B.; Zhang, S. L.; Lou, X. W. Formation of Hierarchical FeCoS2–CoS2 Double-Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO2. Angew. Chem., Int. Ed. 2020, 59, 11918–11922.
Fu, Z. C.; Xu, R. C.; Moore, J. T.; Liang, F.; Nie, X. C.; Mi, C.; Mo, J.; Xu, Y.; Xu, Q. Q.; Yang, Z. et al. Highly efficient photocatalytic system constructed from cop/carbon nanotubes or graphene for visible-light-driven CO2 reduction. Chem. Eur. J. 2018, 24, 4273–4278.
Yang, P. J.; Wang, R. R.; Tao, H. L.; Zhang, Y. F.; Titirici, M. M.; Wang, X. C. Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B: Environ. 2020, 280, 119454.
Wang, S. B.; Hou, Y. D.; Wang, X. C. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 2015, 7, 4327–4335.
Wang, Z. Y.; Jiang, M.; Qin, J. N.; Zhou, H.; Ding, Z. X. Reinforced photocatalytic reduction of CO2 to CO by a ternary metal oxide NiCo2O4. Phys. Chem. Chem. Phys. 2015, 17, 16040–16046.
Han, B.; Song, J. N.; Liang, S. J.; Chen, W. Y.; Deng, H.; Ou, X. W.; Xu, Y. J.; Lin, Z. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: adsorption and active sites engineering. Appl. Catal. B: Environ. 2020, 260, 118208.
Zhao, K.; Zhao, S. L.; Gao, C.; Qi, J.; Yin, H. J.; Wei, D.; Mideksa, M. F.; Wang, X. L.; Gao, Y.; Tang, Z. Y. et al. Metallic cobalt–carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 2018, 14, 1800762.
Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.
Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single–atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv. Mater. 2018, 30, e1704624.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
Ritzmann, A. M.; Pavone, M.; Muñoz-García, A. B.; Keith, J. A.; Carter, E. A. Ab initio DFT+ U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states. J. Mater. Chem. A 2014, 2, 8060–8074.
Kramer, D.; Ceder, G. Tailoring the morphology of LiCoO2: A first principles study. Chem. Mater. 2009, 21, 3799–3809.
Wang, J. H.; Li, L. Q.; Tian, H. Q.; Zhang, Y. L.; Che, X. L.; Li, G. S. Ultrathin LiCoO2 nanosheets: an efficient water-oxidation catalyst. ACS Appl. Mater. Interfaces 2017, 9, 7100–7107.
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311– 1315.
Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.
Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392.
Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452.
Gummow, R. J.; Thackeray, M. M.; David, W. I. F.; Hull, S. Structure and electrochemistry of lithium cobalt oxide synthesised at 400 ℃. Mater. Res. Bull. 1992, 27, 327–337.
Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.
Gandla, S.; Gollu, S. R.; Sharma, R.; Sarangi, V.; Gupta, D. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors. Appl. Phys. Lett. 2015, 107, 152102.
Lehn, J. M.; Ziessel, R. Photochemical reduction of carbon dioxide to formate catalyzed by 2, 2t́-bipyridine-or 1, 10-phenanthroline- ruthenium (II) complexes. J Organome. Chem. 1990, 382, 157–173.
Wang, L. Y.; Tsang, C. S.; Liu, W.; Zhang, X. D.; Zhang, K.; Ha, E.; Kwok, W. M.; Park, J. H.; Lee, L. Y. S.; Wong, K. Y. Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water. J. Mater. Chem. A 2019, 7, 221–227.
Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.
Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.
Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.
Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.
Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.
Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends. Small Struct. 2021, 2, 2000061.