Journal Home > Volume 15 , Issue 2

Carbon-supported transition metal single atoms are promising oxygen reduction reaction (ORR) electrocatalyst. Since there are many types of carbon supports and transition metals, the accurate prediction of the components with high activity through theoretical calculations can greatly save experimental time and costs. In this work, the ORR catalytic properties of 180 types single-atom catalysts (SACs) composed of the eight representative carbon-based substrates (graphdiyne, C2N, C3N4, phthalocyanine, C-coordination graphene, N-coordination graphene, covalent organic frameworks and metal-organic frameworks) and 3d, 4d, and 5d transition metal elements are investigated by density functional theory (DFT). The adsorption free energy of OH* is proved a universal descriptor capable of accurately prediction of the ORR catalytic activity. It is found that the oxygen reduction reaction overpotentials of all the researched SACs follow one volcano shape very well with the adsorption free energy of OH*. Phthalocyanine, N-coordination graphene and metal-organic frameworks stand out as the promising supports for single metal atom due to the relatively lower overpotentials. Notably, the Co-doped metal-organic frameworks, Ir-doped phthalocyanine, Co-doped N-coordination graphene, Co-doped graphdiyne and Rh-doped phthalocyanine show extremely low overpotentials comparable to that of Pt (111). The study provides a guideline for design and selection of carbon-supported SACs toward oxygen reduction reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction

Show Author's information Yiran Wang1Riming Hu1Yongcheng Li2Fuhe Wang3Jiaxiang Shang1( )Jianglan Shui1( )
School of Materials Science and Engineering Beihang UniversityBeijing 100191 China
Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High-Performance Light Metal Alloys and Forming, Qinghai UniversityXining 810016 China
Center for Condensed Matter Physics Department of Physics Capital Normal UniversityBeijing 100048 China

Abstract

Carbon-supported transition metal single atoms are promising oxygen reduction reaction (ORR) electrocatalyst. Since there are many types of carbon supports and transition metals, the accurate prediction of the components with high activity through theoretical calculations can greatly save experimental time and costs. In this work, the ORR catalytic properties of 180 types single-atom catalysts (SACs) composed of the eight representative carbon-based substrates (graphdiyne, C2N, C3N4, phthalocyanine, C-coordination graphene, N-coordination graphene, covalent organic frameworks and metal-organic frameworks) and 3d, 4d, and 5d transition metal elements are investigated by density functional theory (DFT). The adsorption free energy of OH* is proved a universal descriptor capable of accurately prediction of the ORR catalytic activity. It is found that the oxygen reduction reaction overpotentials of all the researched SACs follow one volcano shape very well with the adsorption free energy of OH*. Phthalocyanine, N-coordination graphene and metal-organic frameworks stand out as the promising supports for single metal atom due to the relatively lower overpotentials. Notably, the Co-doped metal-organic frameworks, Ir-doped phthalocyanine, Co-doped N-coordination graphene, Co-doped graphdiyne and Rh-doped phthalocyanine show extremely low overpotentials comparable to that of Pt (111). The study provides a guideline for design and selection of carbon-supported SACs toward oxygen reduction reaction.

Keywords: density functional theory, oxygen reduction reaction, single-atom catalysts, carbon-supported catalysts, high throughput screening

References(72)

1

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

2

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth– abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Edit. 2016, 55, 2650–2676.

3

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene–based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

4

Yu, D. S.; Nagelli, E.; Du, F.; Dai, L. M. Metal–free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 2010, 1, 2165–2173.

5

Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2d covalent organic polymers complexed with non–precious metals. Angew. Chem., Int. Edit. 2014, 53, 2433–2437.

6

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

7

Da Silva, G. C.; Fernandes, M. R.; Ticianelli, E. A. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions. ACS Catal. 2018, 8, 2081–2092.

8

Zhang, X. L.; Zhang, Y. Y.; Cheng, C.; Yang, Z. X.; Hermansson, K. Tuning the ORR activity of Pt–based Ti2CO2 MXenes by varying the atomic cluster size and doping with metals. Nanoscale 2020, 12, 12497–12507.

9

Lim, B.; Jiang, M. J.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

10

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

11

Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe–N–C catalysts for electro– catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

12

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high–performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

13

Zhu, Z. Y.; Liu, Q. T.; Liu, X. F.; Shui, J. L. Temperature impacts on oxygen reduction reaction measured by the rotating disk electrode technique. J. Phys. Chem. C 2020, 124, 3069–3079.

14

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single–atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

15

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single–atom catalysis enables long–life, high–energy lithium–sulfur batteries. Nano Res. 2020, 13, 1856–1866.

16

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single–atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

17

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

18

Perivoliotis, D. K.; Sato, Y.; Suenaga, K.; Tagmatarchis, N. Covalently functionalized layered MoS2 supported Pd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale 2020, 12, 18278–18288.

19

Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single–boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

20

Liang, Z.; Luo, M. M.; Chen, M. W.; Qi, X. P.; Liu, J.; Liu, C.; Peera, S. G.; Liang, T. X. Exploring the oxygen electrode bi–functional activity of Ni–N–C–doped graphene systems with N, C co-ordination and OH ligand effects. J. Mater. Chem. A 2020, 8, 20453–20462.

21

Mahmood, J.; Li, F.; Kim, C.; Choi, H. J.; Gwon, O.; Jung, S. M.; Seo, J. M.; Cho, S. J.; Ju, Y. W.; Jeong, H. Y. et al. Fe@C2N: A highly–efficient indirect–contact oxygen reduction catalyst. Nano Energy 2018, 44, 304–310.

22

Wei, X. Q.; Luo, X.; Wu, N. N.; Gu, W. L.; Lin, Y. H.; Zhu, C. Z. Recent advances in synergistically enhanced single–atomic site catalysts for boosted oxygen reduction reaction. Nano Energy 2021, 84, 105817.

23

Mao, X.; Kour, G.; Yan, C.; Zhu, Z. H.; Du, A. J. Single transition metal atom–doped graphene supported on a nickel substrate: Enhanced oxygen reduction reactions modulated by electron coupling. J. Phys. Chem. C 2019, 123, 3703–3710.

24

Kan, D. X.; Lian, R. Q.; Wang, D. S.; Zhang, X. L.; Xu, J.; Gao, X. Y.; Yu, Y.; Chen, G.; Wei, Y. J. Screening effective single–atom ORR and OER electrocatalysts from Pt decorated MXenes by first– principles calculations. J. Mater. Chem. A 2020, 8, 17065–17077.

25

He, B. L.; Shen, J. S.; Ma, D. W.; Lu, Z. S.; Yang, Z. X. Boron– doped C3N monolayer as a promising metal–free oxygen reduction reaction catalyst: A theoretical insight. J. Phys. Chem. C 2018, 122, 20312–20322.

26

He, B. L.; Shen, J. S.; Lu, Z. S.; Ma, D. W. First–principles study of the oxygen reduction reaction on the boron–doped C9N4 metal–free catalyst. Appl. Surf. Sci. 2020, 527, 146828.

27

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic–level modulation of electronic density at cobalt single–atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Edit. 2021, 60, 3212–3221.

28

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal– support interaction of single–atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

29

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron–doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

30

Xue, Z.; Zhang, X. Y.; Qin, J. Q.; Liu, R. P. High–throughput identification of high activity and selectivity transition metal single– atom catalysts for nitrogen reduction. Nano Energy 2021, 80, 105527.

31

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single–atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

32

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struc. 2021, 2, 2000051.

33

Iwase, K.; Nakanishi, S.; Miyayama, M.; Kamiya, K. Rational molecular design of electrocatalysts based on single–atom modified covalent organic frameworks for efficient oxygen reduction reaction. ACS Appl. Energ. Mater. 2020, 3, 1644–1652.

34

Gao, Y.; Cai, Z. W.; Wu, X. C.; Lv, Z. L.; Wu, P.; Cai, C. X. Graphdiyne–supported single–atom–sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018, 8, 10364–10374.

35

He, T. W.; Matta, S. K.; Will, G.; Du, A. J. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019, 3, 1800419.

36

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel–cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

37

Calle–Vallejo, F.; Martinez, J. I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygenreduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.

38

Liu, J.; Ma, R. P.; Chu, Y. Y.; Gao, N. X.; Jin, Z.; Ge, J. J.; Liu, C. P.; Xing, W. Construction and regulation of a surface protophilic environment to enhance oxygen reduction reaction electrocatalytic activity. ACS Appl. Mater. Inter. 2020, 12, 41269–41276.

39

Xue, Z.; Zhang, X. Y.; Qin, J. Q.; Liu, R. P. TmN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. J. Energy Chem. 2021, 55, 437–443.

40

Li, M. T.; Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. N–doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 2014, 314, 66–72.

41

Wang, H. X.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J. C.; Jiang, J. X.; Jia, F. Q. et al. Understanding the roles of nitrogen configurations in hydrogen evolution: Trace atomic cobalt boosts the activity of planar nitrogen–doped graphene. ACS Energy Lett. 2018, 3, 1345–1352.

42

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single–atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

43

Li, L.; Huang, R.; Cao, X. R.; Wen, Y. H. Computational screening of efficient graphene–supported transition metal single atom catalysts toward the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 19319–19327.

44

Chen, X.; Hu, R. DFT–based study of single transition metal atom doped g–C3N4 as alternative oxygen reduction reaction catalysts. Int. J. Hydrog. Energ. 2019, 44, 15409–15416.

45

Han, Z. K.; Sarker, D.; Ouyang, R. H.; Mazheika, A.; Gao, Y.; Levchenko, S. V. Single–atom alloy catalysts designed by first– principles calculations and artificial intelligence. Nat. Commun. 2021, 12, 1833.

46

Fischer, J. M.; Hunter, M.; Hankel, M.; Searles, D. J.; Parker, A. J.; Barnard, A. S. Accurate prediction of binding energies for two- dimensional catalytic materials using machine learning. ChemCatChem 2020, 12, 5109–5120.

47

Xiao, Y.; Tang, L. High–throughput approach exploitation: Two– dimensional double–metal sulfide (M2S2) of efficient electrocatalysts for oxygen reduction reaction in fuel cells. Energ. Fuel. 2020, 34, 5006–5015.

48

Sarwar, M.; Gavartin, J. L.; Bonastre, A. M.; Lopez, S. G.; Thompsett, D.; Ball, S. C.; Krzystala, A.; Goldbeck, G.; French, S. A. Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Pt alloy catalysts. Phys. Chem. Chem. Phys. 2020, 22, 5902–5914.

49

Zhang, X. L.; Yang, Z. X.; Lu, Z. S.; Wang, W. C. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon 2018, 130, 112–119.

50

Wang, J.; Xu, R.; Sun, Y. L.; Liu, Q.; Xia, M. R.; Li, Y.; Gao, F. M.; Zhao, Y. F.; Tse, J. S. Identifying the Zn–Co binary as a robust bifunctional electrocatalyst in oxygen reduction and evolution reactions via shifting the apexes of the volcano plot. J. Energy Chem. 2021, 55, 162–168.

51

Hu, R. M.; Li, Y. C.; Zeng, Q. W.; Shang, J. X. Role of active sites in N–coordinated Fe–Co dual–metal doped graphene for oxygen reduction and evolution reactions: A theoretical insight. Appl. Surf. Sci. 2020, 525, 146588.

52

Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

53

Ji, Y. J.; Dong, H. L.; Liu, C.; Li, Y. Y. Two–dimensional pi–conjugated metal–organic nanosheets as single–atom catalysts for the hydrogen evolution reaction. Nanoscale 2019, 11, 454–458.

54

Shah, S. S. A.; Najam, T.; Aslam, M. K.; Ashfaq, M.; Rahman, M. M.; Wang, K.; Tsiakaras, P.; Song, S. Q.; Wang, Y. Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B–Environ. 2020, 268, 118570.

55

Li, X. Y.; Zhong, W. H.; Cui, P.; Li, J.; Jiang, J. Design of efficient catalysts with double transition metal atoms on C2N layer. J. Phys. Chem. Lett. 2016, 7, 1750–1755.

56

Xu, J. Y; Liu, B. Intrinsic properties of nitrogen–rich carbon nitride for oxygen reduction reaction. Appl. Surf. Sci. 2020, 500, 144020.

57

Yoshioka, T.; Iwase, K.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Electrocatalytic reduction of nitrate to nitrous oxide by a copper– modified covalent triazine framework. J. Phys. Chem. C 2016, 120, 15729–15734.

58

Wang, Y.; Yuan, H.; Li, Y. F; Chen, Z. F. Two–dimensional iron– phthalocyanine (Fe–Pc) monolayer as a promising single–atom– catalyst for oxygen reduction reaction: A computational study. Nanoscale 2015, 7, 11633–11641.

59

Niu, H.; Wang, X. T.; Shao, C.; Liu, Y. S.; Zhang, Z. F.; Guo, Y. Z. Revealing the oxygen reduction reaction activity origin of single atoms supported on g–C3N4 monolayers: A first–principles study. J. Mater. Chem. A 2020, 8, 6555–6563.

60

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total–energy calculations using a plane–wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

61

Kresse, G.; Furthmüller, J. Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

62

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

63

Ernzerhof, M.; Scuseria, G. E. Assessment of the perdew–burke– ernzerhof exchange–correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

64

Blöchl, P. E. Projector augmented–wave method. Phys. Rev. B 1994, 50, 17953–17979.

65

Liu, J. H.; Yang, L. M.; Ganz, E. Efficient and selective electroreduction of CO2 by single–atom catalyst two–dimensional TM–Pc monolayers. ACS Sustain. Chem. Eng. 2018, 6, 15494–15502.

66

Ji, S.; Wang, Z. X.; Zhao, J. X. A boron–interstitial doped C2N layer as a metal–free electrocatalyst for N2 fixation: A computational study. J. Mater. Chem. A 2019, 7, 2392–2399.

67

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal–free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

68

Monkhorst, H. J.; Pack, J. D. Special points for brillouin–zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

69

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT–D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

70

Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

71

Rothenberg, G. Catalysis: Concepts and green applications. Focus on Catal. 2008, 2008, 8.

72

Mortazavi, B.; Shahrokhi, M.; Hussain, T.; Zhuang, X. Y.; Rabczuk, T. Theoretical realization of two–dimensional M3(C6X6)2 (M = Co, Cr, Cu, Fe, Mn, Ni, Pd, Rh and X = O, S, Se) metal–organic frameworks. Appl. Mater. Today 2019, 15, 405–415.

File
12274_2021_3598_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2021
Revised: 07 May 2021
Accepted: 18 May 2021
Published: 24 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51371017). This research was supported by the high-performance computing (HPC) resources at Beihang University.

Return