Journal Home > Volume 14 , Issue 11

Efficient hydrogen production via photocatalysis with high utilization efficiency of Pt cocatalyst is of great importance for sustainable development. In this work, we report an in situ auto-reduction strategy to encapsulate highly dispersed Pt clusters inside the cages of MIL-125-NH2. The amino groups in MIL-125-NH2 first react with formaldehyde to form reducing groups (i.e., –NH-CH2OH), which can in situ auto-reduce the confined Pt2+ ions to ultrasmall Pt clusters within the cavities. With optimized Pt content, photocatalytic H2 production over the obtained Pt(1.5)/MIL-125-NH-CH2OH catalyst with 1.43 wt.% Pt loading achieved as high as 4, 496.4 µmol·g−1·h−1 under visible light (λ > 420 nm) due to the facilitated transfer and separation of the photo-induced charger carriers arising from the synergetic effects between highly dispersed Pt clusters and MIL-125-NH-CH2OH framework. This in situ auto-reduction strategy may be extended to encapsulate various kinds of metal or alloy clusters/nanoparticles within amino-functioned metal-organic frameworks (MOFs) with superior properties and excellent performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light

Show Author's information Xiubing Huang§( )Xiangjun Li§Qingjie Luan§Kaiyue ZhangZhenyu WuBaozhen LiZuoshuai XiWenjun DongGe Wang( )
Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory of Function Materials for Molecule & Structure Construction School of Materials Science and Engineering University of Science and Technology Beijing Beijing 10083 China

§Xiubing Huang, Xiangjun Li, and Qingjie Luan contributed equally to this work

Abstract

Efficient hydrogen production via photocatalysis with high utilization efficiency of Pt cocatalyst is of great importance for sustainable development. In this work, we report an in situ auto-reduction strategy to encapsulate highly dispersed Pt clusters inside the cages of MIL-125-NH2. The amino groups in MIL-125-NH2 first react with formaldehyde to form reducing groups (i.e., –NH-CH2OH), which can in situ auto-reduce the confined Pt2+ ions to ultrasmall Pt clusters within the cavities. With optimized Pt content, photocatalytic H2 production over the obtained Pt(1.5)/MIL-125-NH-CH2OH catalyst with 1.43 wt.% Pt loading achieved as high as 4, 496.4 µmol·g−1·h−1 under visible light (λ > 420 nm) due to the facilitated transfer and separation of the photo-induced charger carriers arising from the synergetic effects between highly dispersed Pt clusters and MIL-125-NH-CH2OH framework. This in situ auto-reduction strategy may be extended to encapsulate various kinds of metal or alloy clusters/nanoparticles within amino-functioned metal-organic frameworks (MOFs) with superior properties and excellent performance.

Keywords: visible light, Pt clusters, MIL-125-NH2, in situ auto-reduction method, photocatalytic H2 production

References(56)

1

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

2

Lin, L. L.; Yao, S. Y.; Gao, R.; Liang, X.; Yu, Q. L.; Deng, Y. C.; Liu, J. J.; Peng, M.; Jiang, Z.; Li, S. W. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 2019, 14, 354–361.

3

Wei, S. H.; Chang, S. F.; Qian, J.; Xu, X. X. Selective cocatalyst deposition on ZnTiO3−xNy hollow nanospheres with efficient charge separation for solar-driven overall water splitting. Small 2021, 17, 2100084.

4

Wu, Z. Y.; Huang, X. B.; Zheng, H. Y.; Wang, P.; Hai, G. T.; Dong, W. J.; Wang, G. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Appl. Catal. B-Environ. 2018, 224, 479–487.

5

Dhakshinamoorthy, A.; Li, Z. H.; Garcia, H. Catalysis and photo­catalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172.

6

Xue, Y. P.; Zhao, G. C.; Yang, R. Y.; Chu, F.; Chen, J.; Wang, L.; Huang, X. B. 2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911–3936.

7

Xue, Z. Q.; Liu, K.; Liu, Q. L.; Li, Y. L.; Li, M. R.; Su, C. Y.; Ogiwara, N.; Kobayashi, H.; Kitagawa, H.; Liu, M. et al. Missing- linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 2019, 10, 5048.

8

Xue, Z. Q.; Li, Y. L.; Zhang, Y. W.; Geng, W.; Jia, B. M.; Tang, J. J.; Bao, S. X.; Wang, H. P.; Fan, Y. N.; Wei, Z. W. et al. Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2018, 8, 1801564.

9

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal–organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

10

Zhao, G. X.; Liu, H. M.; Ye, J. H. Constructing and controlling of highly dispersed metallic sites for catalysis. Nano Today 2018, 19, 108–125.

11

Chen, L. N.; Zhang, X. B.; Cheng, X. Q.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Adv. 2020, 2, 2628–2647.

12

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

13
Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res., in press, DOI: 10.1007/s12274-020-3182-1.https://doi.org/10.1007/s12274-020-3182-1
DOI
14

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

15

Zhu, Q. L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 2016, 1, 220–245.

16

Mon, M.; Rivero-Crespo, M. A.; Ferrando-Soria, J.; Vidal-Moya, A.; Boronat, M.; Leyva-Pérez, A.; Corma, A.; Hernández-Garrido, J. C.; López-Haro, M.; Calvino, J. J. et al. Synthesis of densely packaged, ultrasmall Pt20 clusters within a thioether-functionalized MOF: Catalytic activity in industrial reactions at low temperature. Angew. Chem., Int. Ed. 2018, 57, 6186–6191.

17

Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal–organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.

18

Chen, Y. F.; Tan, L. L.; Liu, J. M.; Qin, S.; Xie, Z. Q.; Huang, J. F.; Xu, Y. W.; Xiao, L. M.; Su, C. Y. Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production. Appl. Catal. B-Environ. 2017, 206, 426–433.

19

Ning, L. M.; Liao, S. Y.; Cui, H. G.; Yu, L. H.; Tong, X. L. Selective conversion of renewable furfural with ethanol to produce furan- 2-acrolein mediated by Pt@MOF-5. ACS Sustainable Chem. Eng. 2018, 6, 135–142.

20

Yoshimaru, S.; Sadakiyo, M.; Staykov, A.; Kato, K.; Yamauchi, M. Modulation of the catalytic activity of Pt nanoparticles through charge-transfer interactions with metal–organic frameworks. Chem. Commun. 2017, 53, 6720–6723.

21

Guo, S. L.; Zhao, Y. K.; Wang, C. X.; Jiang, H. Q.; Cheng, G. J. A single-atomic noble metal enclosed defective MOF via cryogenic UV photoreduction for CO oxidation with ultrahigh efficiency and stability. ACS Appl. Mater. Interfaces 2020, 12, 26068–26075.

22

Wang, D. K.; Song, Y. J.; Cai, J. Y.; Wu, L.; Li, Z. H. Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New J. Chem. 2016, 40, 9170–9175.

23

Gutterød, E. S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K. P.; Skúlason, E.; Øien-Ødegaard, S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal–organic framework. J. Am. Chem. Soc. 2020, 142, 999–1009.

24

Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926– 13929.

25

Phan, D. P.; Lee, E. Y. Phosphoric acid enhancement in a Pt- encapsulated Metal-Organic Framework (MOF) bifunctional catalyst for efficient hydro-deoxygenation of oleic acid from biomass. J. Catal. 2020, 386, 19–29.

26

Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.

27

Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J. Am. Chem. Soc. 2015, 137, 7810–7816.

28

Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.

29

Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light- responsive metal–organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater. 2018, 30, 1707377.

30

Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78.

31

Zhang, W. L.; Shi, W. X.; Ji, W. L.; Wu, H. B.; Gu, Z. D.; Wang, P.; Li, X. H.; Qin, P. S.; Zhang, J.; Fan, Y. et al. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes. ACS Catal. 2020, 10, 5805–5813.

32

Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and Schottky Junctions into metal–organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

33

He, H. H.; Li, L. Y.; Liu, Y.; Kassymova, M.; Li, D. D.; Zhang, L. L.; Jiang, H. L. Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Res. 2021, 14, 444–449.

34

Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.

35

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

36

Hester, P.; Xu, S. J.; Liang, W.; Al-Janabi, N.; Vakili, R.; Hill, P.; Muryn, C. A.; Chen, X. B.; Martin, P. A.; Fan, X. L. On thermal stability and catalytic reactivity of Zr-based metal–organic framework (UiO-67) encapsulated Pt catalysts. J. Catal. 2016, 340, 85–94.

37

Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198–10203.

38

Liu, H. L.; Chang, L. N.; Chen, L. Y.; Li, Y. W. In situ one-step synthesis of metal–organic framework encapsulated naked Pt nanoparticles without additional reductants. J. Mater. Chem. A 2015, 3, 8028–8033.

39

Liu, H. L.; Chang, L. N.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of "clean" metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem., Int. Ed. 2016, 55, 5019–5023.

40

Sun, J. M.; Ma, D.; Zhang, H.; Liu, X. M.; Han, X. W.; Bao, X. H.; Weinberg, G.; Pfänder, N.; Su, D. S. Toward monodispersed silver nanoparticles with unusual thermal stability. J. Am. Chem. Soc. 2006, 128, 15756–15764.

41

Lu, G. L.; Huang, X. B.; Li, Y.; Zhao, G. X.; Pang, G. S.; Wang, G. Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. J. Energy Chem. 2020, 43, 8–15.

42

Sun, D. R.; Li, Z. H. Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2–Uio-66(Zr) for efficient visible-light-promoted Suzuki coupling reaction. J. Phys. Chem. C 2016, 120, 19744–19750.

43

Li, X. M.; Liu, J.; Zhao, C.; Zhou, J. L.; Zhao, L.; Li, S. L.; Lan, Y. Q. Strategic hierarchical improvement of superprotonic conductivity in a stable metal–organic framework system. J. Mater. Chem. A 2019, 7, 25165–25171.

44

Sun, D. R.; Ye, L.; Li, Z. H. Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl. Catal. B-Environ. 2015, 164, 428–432.

45

Wang, T.; Tao, X. Q.; Xiao, Y.; Qiu, G. H.; Yang, Y.; Li, B. X. Charge separation and molecule activation promoted by Pd/MIL-125-NH2 hybrid structures for selective oxidation reactions. Catal. Sci. Technol. 2020, 10, 138–146.

46

Bibi, R.; Huang, H. L.; Kalulu, M.; Shen, Q. H.; Wei, L. F.; Oderinde, O.; Li, N. X.; Zhou, J. C. Synthesis of amino-functionalized Ti-MOF derived yolk–shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light. ACS Sustainable Chem. Eng. 2019, 7, 4868–4877.

47

Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Chen, X. H.; Leng, L. J.; Wu, Z. B.; Jiang, L. B.; Li, H. Facile synthesis of amino- functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction. J. Hazard. Mater. 2015, 286, 187–194.

48

Vakili, R.; Gibson, E. K.; Chansai, S.; Xu, S. J.; Al-Janabi, N.; Wells, P. P.; Hardacre, C.; Walton, A.; Fan, X. L. Understanding the CO oxidation on Pt nanoparticles supported on MOFs by operando XPS. ChemCatChem 2018, 10, 4238–4242.

49

Zhang, W. T.; Huang, W. G.; Jin, J. Y.; Gan, Y. H.; Zhang, S. J. Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Appl. Catal. B-Environ. 2021, 292, 120197.

50

Zhao, G. X.; Busser, G. W.; Froese, C.; Hu, B.; Bonke, S. A.; Schnegg, A.; Ai, Y. J.; Wei, D. L.; Wang, X. K.; Peng, B. X. et al. Anaerobic alcohol conversion to carbonyl compounds over nanoscaled Rh-doped SrTiO3 under visible light. J. Phys. Chem. Lett. 2019, 10, 2075–2080.

51

Xu, X. X.; Wang, R.; Sun, X. Q.; Lv, M. L.; Ni, S. Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. ACS Catal. 2020, 10, 9889– 9898.

52

Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

53

Sun, D. R.; Liu, W. J.; Fu, Y. H.; Fang, Z. X; Sun, F. X.; Fu, X. Z.; Zhang, Y. F.; Li, Z. H. Noble metals can have different effects on photocatalysis over Metal–Organic Frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chem. Eur. J. 2014, 20, 4780–4788.

54

Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(Ⅳ) metal–organic framework. J. Phys. Chem. C 2012, 116, 20848– 20853.

55

Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst. Catal. Sci. Technol. 2013, 3, 2092–2097.

56

Wang, J.; Cherevan, A. S.; Hannecart, C.; Naghdi, S.; Nandan, S. P.; Gupta, T.; Eder, D. Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2021, 283, 119626.

File
12274_2021_3597_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2021
Revised: 10 May 2021
Accepted: 16 May 2021
Published: 14 July 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the financial supports from the National Natural Science Foundation of China (No. 51802015), Fundamental Research Funds for the Central Universities (No. FRF-TP-20-005A3), and Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (No. FRF-IDRY-19-020).

Return