Journal Home > Volume 15 , Issue 2

Electrospinning is a popular and effective method of producing porous nanofibers with a large surface area, superior physical and chemical properties, and a controllable pore size. Owing to these properties, electrospun nanofibers can mimic the extracellular matrix and some human tissue structures, based on the fiber configuration. Consequently, the application of electrospun nanofibers as biomaterials, varying from two-dimensional (2D) wound dressings to three-dimensional (3D) tissue engineering scaffolds, has increased rapidly in recent years. Nanofibers can either be uniform fiber strands or coaxial drug carriers, and their overall structure varies from random mesh-like mats to aligned or gradient scaffolds. In addition, the pore size of the fibers can be adjusted or the fibers can be loaded with disparate medicines to provide different functions. This review discusses the various structures and applications of 2D fiber mats and 3D nanofibrous scaffolds made up of different one-dimensional (1D) fibers in tissue engineering. In particular, we focus on the improvements made in recent years, especially in the fields of wound healing, angiogenesis, and tissue regeneration.


menu
Abstract
Full text
Outline
About this article

Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications

Show Author's information Huiling Zhong1,2,§Jun Huang2,§Jun Wu1,2( )Jianhang Du1,3( )
Guangdong Innovative Engineering and Technology Research Center for Assisted Circulationthe Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen518033China
Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical EngineeringSun Yat-sen UniversityGuangzhou510006China
NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University)Guangzhou510080China

§ Huiling Zhong and Jun Huang contributed equally to this work.

Abstract

Electrospinning is a popular and effective method of producing porous nanofibers with a large surface area, superior physical and chemical properties, and a controllable pore size. Owing to these properties, electrospun nanofibers can mimic the extracellular matrix and some human tissue structures, based on the fiber configuration. Consequently, the application of electrospun nanofibers as biomaterials, varying from two-dimensional (2D) wound dressings to three-dimensional (3D) tissue engineering scaffolds, has increased rapidly in recent years. Nanofibers can either be uniform fiber strands or coaxial drug carriers, and their overall structure varies from random mesh-like mats to aligned or gradient scaffolds. In addition, the pore size of the fibers can be adjusted or the fibers can be loaded with disparate medicines to provide different functions. This review discusses the various structures and applications of 2D fiber mats and 3D nanofibrous scaffolds made up of different one-dimensional (1D) fibers in tissue engineering. In particular, we focus on the improvements made in recent years, especially in the fields of wound healing, angiogenesis, and tissue regeneration.

Keywords: tissue engineering, structures, electrospinning nanofibers, three-dimensional (3D) scaffolds

References(174)

1

Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 2020, 12, e1626.

2

Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89-R106.

3

Li, D.; Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

4

Zhang, C. L.; Yu, S. H. Spraying functional fibres by electrospinning. Mater. Horiz. 2016, 3, 266–269.

5

Liu, G. T.; Bao, Z. T.; Wu, J. Injectable baicalin/F127 hydrogel with antioxidant activity for enhanced wound healing. Chin. Chem. Lett. 2020, 31, 1817–1821.

6

Gao, Y. F.; Li, Z.; Huang, J.; Zhao, M.; Wu, J. In situ formation of injectable hydrogels for chronic wound healing. J. Mater. Chem. B 2020, 8, 8768–8780.

7

Xue, J. J.; Pisignano, D.; Xia, Y. N. Maneuvering the migration and differentiation of stem cells with electrospun nanofibers. Adv. Sci. 2020, 7, 2000735.

8

Karimi, F.; O'Connor, A. J.; Qiao, G. G.; Heath, D. E. Integrin clustering matters: A review of biomaterials functionalized with multivalent integrin-binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration. Adv. Healthc. Mater. 2018, 7, 1701324.

9

Ding, J. X.; Zhang, J.; Li, J. N.; Li, D.; Xiao, C. S.; Xiao, H. H.; Yang, H. H.; Zhuang, X. L.; Chen, X. S. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019, 90, 1–34.

10

Chen, S. X.; Li, R. Q.; Li, X. R.; Xie, J. W. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev. 2018, 132, 188–213.

11

Arasu, V.; Hwang, S.; Zhang, B.; Byun, D.; Park, S. H. 1D fibers and 2D patterns made of quantum dot-embedded DNA via electrospinning and electrohydrodynamic jet printing. Adv. Mater. Technol. 2019, 4, 1800280.

12

Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. , Int. Ed. 2007, 46, 5670–5703.

13

Chen, Z. G.; Mo, X. M.; Qing, F. L. Electrospinning of collagen– chitosan complex. Mater. Lett. 2007, 61, 3490–3494.

14

Li, X. H.; Li, B. S.; Ullah, M. W.; Panday, R.; Cao, J. M.; Li, Q. B.; Zhang, Y. P.; Wang, L.; Yang, G. Water-stable and finasteride-loaded polyvinyl alcohol nanofibrous particles with sustained drug release for improved prostatic artery embolization—in vitro and in vivo evaluation. Mater. Sci. Eng. : C 2020, 115, 111107.

15

Hou, L. L.; Wang, N.; Wu, J.; Cui, Z. M.; Jiang, L.; Zhao, Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv. Funct. Mater. 2018, 28, 1801114.

16

Yarin, A. L. Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym. Adv. Technol. 2011, 22, 310–317.

17

He, P.; Zhong, Q.; Ge, Y.; Guo, Z. Z.; Tian, J. H.; Zhou, Y. H.; Ding, S.; Li, H.; Zhou, C. R. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Mater. Sci. Eng. : C 2018, 90, 549–556.

18

Zhao, Y.; Cao, X. Y.; Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 2007, 129, 764–765.

19

Ji, W.; Yang, F.; van den Beucken, J. J. J. P.; Bian, Z.; Fan, M. W.; Chen, Z.; Jansen, J. A. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomater. 2010, 6, 4199–4207.

20

Li, L. L.; Peng, S. J.; Cheah, Y. L.; Wang, J.; Teh, P.; Ko, Y.; Wong, C.; Srinivasan, M. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. Nanoscale 2013, 5, 134–138.

21

Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater. 2003, 15, 1929–1932.

22

Zussman, E.; Yarin, A. L.; Bazilevsky, A. V.; Avrahami, R.; Feldman, M. Electrospun polyaniline/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Adv. Mater. 2006, 18, 348–353.

23

Moreno, I.; González-González, V.; Romero-García, J. Control release of lactate dehydrogenase encapsulated in poly (vinyl alcohol) nanofibers via electrospinning. Eur. Polym. J. 2011, 47, 1264–1272.

24

Zhang, C.; Feng, F. Q.; Zhang, H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci. Technol. 2018, 80, 175–186.

25

Li, X. L.; Xu, F. N.; He, Y.; Li, Y.; Hou, J. W.; Yang, G.; Zhou, S. B. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer. Adv. Funct. Mater. 2020, 30, 2004851.

26

Rathore, P.; Schiffman, J. D. Beyond the single-nozzle: Coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl. Mater. Interfaces 2021, 13, 48–66.

27

Pakravan, M.; Heuzey, M. C.; Ajji, A. Core–shell structured PEO- chitosan nanofibers by coaxial electrospinning. Biomacromolecules 2012, 13, 412–421.

28

Liu, X. K.; Yang, Y. Y.; Yu, D. G.; Zhu, M. J.; Zhao, M.; Williams, G. R. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem. Eng. J. 2019, 356, 886–894.

29

Li, L. L.; Peng, S. J.; Lee, J. K. Y.; Ji, D. X.; Srinivasan, M.; Ramakrishna, S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017, 39, 111–139.

30

Yoon, J.; Yang, H. S.; Lee, B. S.; Yu, W. R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Adv. Mater. 2018, 30, 1704765.

31

Ou, K. L.; Chen, C. S.; Lin, L. H.; Lu, J. C.; Shu, Y. C.; Tseng, W. C.; Yang, J. C.; Lee, S. Y.; Chen, C. C. Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly(l-lactic acid) (PLLA) fibers. Eur. Polym. J. 2011, 47, 882–892.

32

Halaui, R.; Zussman, E.; Khalfin, R.; Semiat, R.; Cohen, Y. Polymeric microtubes for water filtration by co-xial electrospinning technique. Polym. Adv. Technol. 2017, 28, 570–582.

33

Yang, H. S.; Lee, B. S.; You, B. C.; Sohn, H. J.; Yu, W. R. Fabrication of carbon nanofibers with Si nanoparticle-stuffed cylindrical multi- channels via coaxial electrospinning and their anodic performance. RSC Adv. 2014, 4, 47389–47395.

34

Jeong, Y. J.; Koo, W. T.; Jang, J. S.; Kim, D. H.; Kim, M. H.; Kim, I. D. Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor. ACS Appl. Mater. Interfaces 2018, 10, 2016–2025.

35

Fong, H.; Chun, I.; Reneker, D. H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592.

36

Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer–polymer interaction limit. Polymer 2005, 46, 3372–3384.

37

Lin, T.; Wang, H. X.; Wang, H. M.; Wang, X. G. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 2004, 15, 1375–1381.

38

Zuo, W. W.; Zhu, M. F.; Yang, W.; Yu, H.; Chen, Y. M.; Zhang, Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 2005, 45, 704–709.

39

Liu, Y.; He, J. H.; Yu, J. Y.; Zeng, H. M. Controlling numbers and sizes of beads in electrospun nanofibers. Polym. Int. 2008, 57, 632–636.

40

Tian, X. L.; Bai, H.; Zheng, Y. M.; Jiang, L. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Adv. Funct. Mater. 2011, 21, 1398–1402.

41

Somvipart, S.; Kanokpanont, S.; Rangkupan, R.; Ratanavaraporn, J.; Damrongsakkul, S. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. Int. J. Biol. Macromol. 2013, 55, 176–184.

42

Li, T. X.; Ding, X.; Tian, L. L.; Hu, J. Y.; Yang, X. D.; Ramakrishna, S. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Mater. Sci. Eng. : C 2017, 74, 471–477.

43

Greenfeld, I.; Rodricks, C. W.; Sui, X. M.; Wagner, H. D. Beaded fiber composites—Stiffness and strength modeling. J. Mech. Phys. Solids 2019, 125, 384–400.

44

Li, T. X.; Wang, L.; Huang, Y. F.; Xin, B. J.; Liu, S. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering. J. Biomater. Sci., Polym. Ed. 2020, 31, 1223–1236.

45

Xi, H. J.; Zhao, H. J. Silk fibroin coaxial bead-on-string fiber materials and their drug release behaviors in different pH. J. Mater. Sci. 2019, 54, 4246–4258.

46

Rasouli, M.; Pirsalami, S.; Zebarjad, S. M. Study on the formation and structural evolution of bead-on-string in electrospun polysulfone mats. Polym. Int. 2020, 69, 822–832.

47

Bu, N. B.; Huang, Y. A.; Deng, H. X.; Yin, Z. P. Tunable bead- on-string microstructures fabricated by mechano-electrospinning. J. Phys. D: Appl. Phys. 2012, 45, 405301.

48

Wang, Z.; Zhao, C. C.; Pan, Z. J. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid Interface Sci. 2015, 441, 121–129.

49

Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005, 46, 4799–4810.

50

Abutaleb, A.; Lolla, D.; Aljuhani, A.; Shin, H. U.; Rajala, J. W.; Chase, G. G. Effects of surfactants on the morphology and properties of electrospun polyetherimide fibers. Fibers 2017, 5, 33.

51

Yu, J.; Qiu, Y. J.; Zha, X. X.; Yu, M.; Yu, J. L.; Rafique, J.; Yin, J. Production of aligned helical polymer nanofibers by electrospinning. Eur. Polym. J. 2008, 44, 2838–2844.

52

Kessick, R.; Tepper, G. Microscale polymeric helical structures produced by electrospinning. Appl. Phys. Lett. 2004, 84, 4807–4809.

53

Dabirian, F.; Hosseini Ravandi, S. A.; Hashemi Sanatgar, R.; Hinestroza, J. P. Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process. Fibers Polym. 2011, 12, 610–615.

54

Silva, P. E. S.; Vistulo de Abreu, F.; Godinho, M. H. Shaping helical electrospun filaments: A review. Soft Matter 2017, 13, 6678–6688.

55

Fennessey, S. F.; Farris, R. J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004, 45, 4217–4225.

56

Affdl, J. C. H.; Kardos, J. L. The Halpin–Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352.

57

Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.; Yang, G. L.; Li, C.; Willis, P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 2003, 15, 1161–1165.

58

Liu, C. K.; Sun, R. J.; Lai, K.; Sun, C. Q.; Wang, Y. W. Preparation of short submicron-fiber yarn by an annular collector through electrospinning. Mater. Lett. 2008, 62, 4467–4469.

59

Nakashima, R.; Watanabe, K.; Lee, Y.; Kim, B. S.; Kim, I. S. Mechanical properties of poly(vinylidene fluoride) nanofiber filaments prepared by electrospinning and twisting. Adv. Polym. Technol. 2013, 32, E44–E52.

60

O'Connor, R. A.; McGuinness, G. B. Electrospun nanofibre bundles and yarns for tissue engineering applications: A review. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 2016, 230, 987–998.

61

Wu, J. L.; Liu, S.; He, L. P.; Wang, H. S.; He, C. L.; Fan, C. Y.; Mo, X. M. Electrospun nanoyarn scaffold and its application in tissue engineering. Mater. Lett. 2012, 89, 146–149.

62

Wu, J. L.; Huang, C.; Liu, W.; Yin, A. L.; Chen, W. M.; He, C. L.; Wang, H. S.; Liu, S.; Fan, C. Y.; Bowlin, G. L. et al. Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning. J. Biomed. Nanotechnol. 2014, 10, 603–614.

63

Maleki, H.; Gharehaghaji, A. A.; Toliyat, T.; Dijkstra, P. J. Drug release behavior of electrospun twisted yarns as implantable medical devices. Biofabrication 2016, 8, 035019.

64

Burger, C.; Hsiao, B. S.; Chu, B. J. M. Nanofibrous materials and their applications. Ann. Rev. Mater. Res. 2006, 36, 333–368.

65

Mushi, N. E.; Kochumalayil, J.; Cervin, N. T.; Zhou, Q.; Berglund, L. A. Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: Preparation, structure, and properties. ChemSusChem 2016, 9, 989–995.

66

Wang, M. X.; Huang, Z. H.; Kang, F. Y.; Liang, K. M. Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins. Mater. Lett. 2011, 65, 1875–1877.

67

Han, J. P.; Xiong, L. K.; Jiang, X. Y.; Yuan, X. Y.; Zhao, Y.; Yang, D. Y. Bio-functional electrospun nanomaterials: From topology design to biological applications. Prog. Polym. Sci. 2019, 91, 1–28.

68

Naveen, N.; Kumar, R.; Balaji, S.; Uma, T. S.; Natrajan, T. S.; Sehgal, P. K. Synthesis of nonwoven nanofibers by electrospinning – a promising biomaterial for tissue engineering and drug delivery. Adv. Eng. Mater. 2010, 12, B380–B387.

69

Li, D.; Wang, Y.; Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 2004, 16, 361–366.

70

Liu, Y. Q.; Zhang, X. P.; Xia, Y. N.; Yang, H. Magnetic-field- assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 2010, 22, 2454–2457.

71

Yuan, H. H.; Zhao, S. F.; Tu, H. B.; Li, B. Y.; Li, Q.; Feng, B.; Peng, H. J.; Zhang, Y. Z. Stable jet electrospinning for easy fabrication of aligned ultrafine fibers. J. Mater. Chem. 2012, 22, 19634–19638.

72

Yi, B. C.; Zhang, H. L.; Yu, Z. P.; Yuan, H. H.; Wang, X. L.; Zhang, Y. Z. Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration. J. Mater. Chem. B 2018, 6, 3934–3945.

73

Yi, B. C.; Shen, Y. B.; Tang, H.; Wang, X. L.; Li, B.; Zhang, Y. Z. Stiffness of aligned fibers regulates the phenotypic expression of vascular smooth muscle cells. ACS Appl. Mater. Interfaces 2019, 11, 6867–6880.

74

Wang, L.; Chang, M. W.; Ahmad, Z.; Zheng, H. X.; Li, J. S. Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chem. Eng. J. 2017, 307, 661–669.

75

Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

76

Jun, I.; Chung, Y. W.; Heo, Y. H.; Han, H. S.; Park, J.; Jeong, H.; Lee, H.; Lee, Y. B.; Kim, Y. C.; Seok, H. K. et al. Creating hierarchical topographies on fibrous platforms using femtosecond laser ablation for directing myoblasts behavior. ACS Appl. Mater. Interfaces 2016, 8, 3407–3417.

77

Ren, X. Z.; Li, J. X.; Li, J. Y.; Jiang, Y. Q.; Li, L.; Yao, Q. Q.; Ke, Q. F.; Xu, H. Aligned porous fibrous membrane with a biomimetic surface to accelerate cartilage regeneration. Chem. Eng. J. 2019, 370, 1027–1038.

78

Brennan, D. A.; Conte, A. A.; Kanski, G.; Turkula, S.; Hu, X.; Kleiner, M. T.; Beachley, V. Mechanical considerations for electrospun nanofibers in tendon and ligament repair. Adv. Healthc. Mater. 2018, 7, 1701277.

79

Deepthi, S.; Nivedhitha Sundaram, M.; Deepti Kadavan, J.; Jayakumar, R. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr. Polym. 2016, 153, 492–500.

80

Zhu, L.; Jia, S. J.; Liu, T. J.; Yan, L.; Huang, D. G.; Wang, Z. Y.; Chen, S.; Zhang, Z. P.; Zeng, W.; Zhang, Y. et al. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration. Adv. Funct. Mater. 2020, 30, 2002610.

81

Zou, Y. W.; Qin, J. B.; Huang, Z. B.; Yin, G. F.; Pu, X. M.; He, D. Fabrication of aligned conducting PPy-PLLA fiber films and their electrically controlled guidance and orientation for neurites. ACS Appl. Mater. Interfaces 2016, 8, 12576–12582.

82

Yeo, M.; Kim, G. H. Anisotropically aligned cell-laden nanofibrous bundle fabricated via cell electrospinning to regenerate skeletal muscle tissue. Small 2018, 14, 1803491.

83

Li, X. R.; Li, M. Y.; Sun, J.; Zhuang, Y.; Shi, J. J.; Guan, D. W.; Chen, Y. Y.; Dai, J. W. Radially aligned electrospun fibers with continuous gradient of SDF1α for the guidance of neural stem cells. Small 2016, 12, 5009–5018.

84

Wu, T.; Xue, J. J.; Xia, Y. N. Engraving the surface of electrospun microfibers with nanoscale grooves promotes the outgrowth of neurites and the migration of schwann cells. Angew. Chem. , Int. Ed. 2020, 59, 15626–15632.

85

Gao, X. Z.; Han, S. Y.; Zhang, R. H.; Liu, G. T.; Wu, J. Progress in electrospun composite nanofibers: Composition, performance and applications for tissue engineering. J. Mater. Chem. B 2019, 7, 7075–7089.

86

Nguyen, L. H.; Gao, M. Y.; Lin, J. Q.; Wu, W. T.; Wang, J.; Chew, S. Y. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci. Rep. 2017, 7, 42212.

87

Salerno, A.; Iannace, S.; Netti, P. A. Graded biomimetic osteochondral scaffold prepared via CO2 foaming and micronized NaCl leaching. Mater. Lett. 2012, 82, 137–140.

88

Wang, Y. Z.; Xu, R.; Luo, G. X.; Lei, Q.; Shu, Q.; Yao, Z. H.; Li, H. S.; Zhou, J. Y.; Tan, J. L.; Yang, S. et al. Biomimetic fibroblast- loaded artificial dermis with "sandwich" structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization. Acta Biomater. 2016, 30, 246–257.

89

Huang, L.; Huang, J. W.; Shao, H. L.; Hu, X. C.; Cao, C. B.; Fan, S. N.; Song, L. J.; Zhang, Y. P. Silk scaffolds with gradient pore structure and improved cell infiltration performance. Mater. Sci. Eng. : C 2019, 94, 179–189.

90

He, M.; Wang, Q.; Xie, L.; Wu, H.; Zhao, W. F.; Tian, W. D. Hierarchically multi-functionalized graded membrane with enhanced bone regeneration and self-defensive antibacterial characteristics for guided bone regeneration. Chem. Eng. J. 2020, 398, 125542.

91

Bottino, M. C.; Thomas, V.; Janowski, G. M. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011, 7, 216–224.

92

Wu, T. T.; Ding, M. Z.; Shi, C. P.; Qiao, Y. Q.; Wang, P. P.; Qiao, R. R.; Wang, X. C.; Zhong, J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chin. Chem. Lett. 2020, 31, 617–625.

93

Oh, S. H.; Park, I. K.; Kim, J. M.; Lee, J. H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007, 28, 1664–1671.

94

Lowery, J. L.; Datta, N.; Rutledge, G. C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials 2010, 31, 491–504.

95

Mbundi, L.; González-Pérez, M.; González-Pérez, F.; Juanes-Gusano, D.; Rodríguez-Cabello, J. Trends in the development of tailored elastin-like recombinamer–based porous biomaterials for soft and hard tissue applications. Front. Mater. 2021, 7, 601795.

96

Walser, J.; Stok, K. S.; Caversaccio, M. D.; Ferguson, S. J. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications. Biofabrication 2016, 8, 025007.

97

Eichholz, K. F.; Hoey, D. A. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 2018, 75, 140–151.

98

He, F. L.; Li, D. W.; He, J.; Liu, Y. Y.; Ahmad, F.; Liu, Y. L.; Deng, X. D.; Ye, Y. J.; Yin, D. C. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater. Sci. Eng. : C 2018, 86, 18–27.

99

Aghajanpoor, M.; Hashemi-Najafabadi, S.; Baghaban- Eslaminejad, M.; Bagheri, F.; Mohammad Mousavi, S.; Azam Sayyahpour, F. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J. Biomed. Mater. Res. Part A 2017, 105, 1887–1899.

100

Yuan, L.; Li, X. Y.; Ge, L. M.; Jia, X. Q.; Lei, J. F.; Mu, C. D.; Li, D. F. Emulsion template method for the fabrication of gelatin- based scaffold with a controllable pore structure. ACS Appl. Mater. Interfaces 2019, 11, 269–277.

101

Park, H. J.; Lee, O. J.; Lee, M. C.; Moon, B. M.; Ju, H. W.; Lee, J. M.; Kim, J. H.; Kim, D. W.; Park, C. H. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int. J. Biol. Macromol. 2015, 78, 215–223.

102

Refifi, J.; Oudadesse, H.; Merdrignac-Conanec, O.; El Feki, H.; Lefeuvre, B. Salt leaching using powder (SLUP) process for glass/chitosan scaffold elaboration for biomaterial applications. J. Aust. Ceram. Soc. 2020, 56, 1167–1178.

103

Coogan, K. R.; Stone, P. T.; Sempertegui, N. D.; Rao, S. S. Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. Eur. Polym. J. 2020, 135, 109870.

104

Lin, J. Y.; Ding, B.; Yu, J. Y.; Hsieh, Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl. Mater. Interfaces 2010, 2, 521–528.

105

Cheng, T. T.; Li, S. Q.; Xu, L.; Ahmed, A. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning. Mater. Des. 2019, 178, 107867.

106

Watson, N. J.; Johal, R. K.; Glover, Z.; Reinwald, Y.; White, L. J.; Ghaemmaghami, A. M.; Morgan, S. P.; Rose, F. R. A. J.; Povey, M. J. W.; Parker, N. G. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport. Mater. Sci. Eng. : C 2013, 33, 4825–4832.

107

Lee, J. B.; Jeong, S. I.; Bae, M. S.; Yang, D. H.; Heo, D. N.; Kim, C. H.; Alsberg, E.; Kwon, I. K. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. Part A 2011, 17, 2695–2702.

108

Ekaputra, A. K.; Prestwich, G. D.; Cool, S. M.; Hutmacher, D. W. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008, 9, 2097–2103.

109

Zhu, X. L.; Cui, W. G.; Li, X. H.; Jin, Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 2008, 9, 1795–1801.

110

Sheikh, F. A.; Ju, H. W.; Lee, J. M.; Moon, B. M.; Park, H. J.; Lee, O. J.; Kim, J. H.; Kim, D. K.; Park, C. H. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine: Nanotechnol., Biol. Med. 2015, 11, 681–691.

111

Simonet, M.; Schneider, O. D.; Neuenschwander, P.; Stark, W. J. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym. Eng. Sci. 2007, 47, 2020–2026.

112

Leong, M. F.; Rasheed, M. Z.; Lim, T. C.; Chian, K. S. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D, L-lactide) scaffold fabricated by cryogenic electrospinning technique. J. Biomed. Mater. Res. Part A 2009, 91A, 231–240.

113

Ko, J.; Kan, D. Y.; Jun, M. B. G. Combining melt electrospinning and particulate leaching for fabrication of porous microfibers. Manuf. Lett. 2015, 3, 5–8.

114

Pham, O. P.; Sharma, U.; Mikos, A. G. Electrospun Poly(ε- caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Macromolecules 2006, 7, 2796–2805.

115

Larrondo, L.; St. John Manley, R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci. : Polym. Phys. Ed. 1981, 19, 909–920.

116

Brown, T. D.; Dalton, P. D.; Hutmacher, D. W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 2016, 56, 116–166.

117

Wunner, F. M.; Wille, M. L.; Noonan, T. G.; Bas, O.; Dalton, P. D.; De-Juan-Pardo, E. M.; Hutmacher, D. W. Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mate. 2018, 30, 1706570.

118

Rothrauff, B. B.; Lauro, B. B.; Yang, G.; Debski, R. E.; Musahl, V.; Tuan, R. S. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng. Part A 2017, 23, 378–389.

119

Park, S. H.; Kim, M. S.; Lee, B.; Park, J. H.; Lee, H. J.; Lee, N. K.; Jeon, N. L.; Suh, K. Y. Creation of a hybrid scaffold with dual configuration of aligned and random electrospun fibers. ACS Appl. Mater. Interfaces 2016, 8, 2826–2832.

120

Shim, I. K.; Suh, W. H.; Lee, S. Y.; Lee, S. H.; Heo, S. J.; Lee, M. C.; Lee, S. J. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J. Biomed. Mater. Res. Part A 2009, 90A, 595–602.

121

Zhou, J.; Cao, C. B.; Ma, X. L. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int. J. Biol. Macromol. 2009, 45, 504–510.

122

Joung, D.; Lavoie, N. S.; Guo, S. Z.; Park, S. H.; Parr, A. M.; McAlpine, M. C. 3D printed neural regeneration devices. Adv. Funct. Mater. 2020, 30, 1906237.

123

Chen, W. M.; Xu, Y.; Li, Y. Q.; Jia, L. T.; Mo, X. M.; Jiang, G. N.; Zhou, G. D. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem. Eng. J. 2020, 382, 122986.

124

Chen, T. T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv. Funct. Mater. 2018, 28, 1800514.

125

Eom, S.; Park, S. M.; Hong, H.; Kwon, J.; Oh, S. R.; Kim, J.; Kim, D. S. Hydrogel-assisted electrospinning for fabrication of a 3D complex tailored nanofiber macrostructure. ACS Appl. Mater. Interfaces 2020, 12, 51212–51224.

126

Lee, J. S.; Chae, S.; Yoon, D.; Yoon, D.; Chun, W.; Kim, G. H. Angiogenic factors secreted from human ASC spheroids entrapped in an alginate-based hierarchical structure via combined 3D printing/electrospinning system. Biofabrication 2020, 12, 045028.

127

Sun, D. H.; Chang, C.; Li, S.; Lin, L. W. Near-field electrospinning. Nano Lett. 2006, 6, 839–842.

128

Su, Y. C.; Qiu, T.; Song, W.; Han, X. J.; Sun, M. M.; Wang, Z.; Xie, H.; Dong, M. D.; Chen, M. L. Melt electrospinning writing of magnetic microrobots. Adv. Sci. 2021, 8, 2003177.

129

Brown, T. D.; Dalton, P. D.; Hutmacher, D. W. Direct writing by way of melt electrospinning. Adv. Mater. 2011, 23, 5651–5657.

130

He, J. K.; Xu, F. Y.; Cao, Y.; Liu, Y. X.; Li, D. C. Towards microscale electrohydrodynamic three-dimensional printing. J. Phys. D: Appl. Phys. 2016, 49, 055504.

131

Park, Y. S.; Kim, J.; Oh, J. M.; Park, S.; Cho, S.; Ko, H.; Cho, Y. K. Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios. Nano Lett. 2020, 20, 441–448.

132

Rahmati, M.; Mills, D. K.; Urbanska, A. M.; Saeb, M. R.; Venugopal, J. R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721.

133

Wu, T.; Huang, C.; Li, D. W.; Yin, A. L.; Liu, W.; Wang, J.; Chen, J. F.; Ei-Hamshary, H.; Al-Deyab, S. S.; Mo, X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf. B: Biointerf. 2015, 133, 179–188.

134

Lu, S. T.; Fan, X. C.; Wang, H. N.; Zhao, Y. L.; Zhao, W. C.; Li, M. Z.; Lv, R. Y.; Wang, T.; Sun, T. D. Synthesis of gelatin-based dual-targeted nanoparticles of betulinic acid for antitumor therapy. ACS Appl. Bio Mater. 2020, 3, 3518–3525.

135

Ugarte-Berzal, E.; Vandooren, J.; Bailón, E.; Opdenakker, G.; García-Pardo, A. Inhibition of MMP-9-dependent degradation of gelatin, but not other MMP-9 substrates, by the MMP-9 hemopexin domain blades 1 and 4. J. Biol. Chem. 2016, 291, 11751–11760.

136

Zhao, X.; Sun, X. M.; Yildirimer, L.; Lang, Q.; Lin, Z. Y.; Zheng, R.; Zhang, Y. G.; Cui, W. G.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66–77.

137

Wen, P.; Zong, M. H.; Linhardt, R. J.; Feng, K.; Wu, H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci. Technol. 2017, 70, 56–68.

138

Hou, Z. Y.; Li, X. J.; Li, C. X.; Dai, Y. L.; Ma, P. A.; Zhang, X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. Electrospun upconversion composite fibers as dual drugs delivery system with individual release properties. Langmuir 2013, 29, 9473–9482.

139

Zhang, Z. Y.; Liu, S.; Qi, Y. X.; Zhou, D. F.; Xie, Z. G.; Jing, X. B.; Chen, X. S.; Huang, Y. B. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release 2016, 235, 125–133.

140

Honarbakhsh, S.; Guenther, R. H.; Willoughby, J. A.; Lommel, S. A.; Pourdeyhimi, B. Polymeric systems incorporating plant viral nanoparticles for tailored release of therapeutics. Adv. Healthc. Mater. 2013, 2, 1001–1007.

141

Han, J. P.; Liang, C. Y.; Cui, Y. C.; Xiong, L. K.; Guo, X. C.; Yuan, X. Y.; Yang, D. Y. Encapsulating microorganisms inside electrospun microfibers as a living material enables room- temperature storage of microorganisms. ACS Appl. Mater. Interfaces 2018, 10, 38799–38806.

142

Zussman, E. Encapsulation of cells within electrospun fibers. Polym. Adv. Technol. 2011, 22, 366–371.

143

Letnik, I.; Avrahami, R.; Rokem, J. S.; Greiner, A.; Zussman, E.; Greenblatt, C. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules 2015, 16, 3322–3328.

144

Bao, Z. T.; Xian, C. H.; Yuan, Q. J.; Liu, G. T.; Wu, J. Natural polymer-based hydrogels with enhanced mechanical performances: Preparation, structure, and property. Adv. Healthc. Mater. 2019, 8, 1900670.

145

Lai, H. J.; Kuan, C. H.; Wu, H. C.; Tsai, J. C.; Chen, T. M.; Hsieh, D. J.; Wang, T. W. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014, 10, 4156–4166.

146

Yau, W. W. Y.; Long, H. Y.; Gauthier, N. C.; Chan, J. K. Y.; Chew, S. Y. The effects of nanofiber diameter and orientation on siRNA uptake and gene silencing. Biomaterials 2015, 37, 94–106.

147

Zhou, F.; Jia, X. L.; Yang, Y.; Yang, Q. M.; Gao, C.; Hu, S. L.; Zhao, Y. H.; Fan, Y. B.; Yuan, X. Y. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater. 2016, 43, 303–313.

148

Liao, I. C.; Chen, S. L.; Liu, J. B.; Leong, K. W. Sustained viral gene delivery through core-shell fibers. J. Control. Release 2009, 139, 48–55.

149

Wang, X. C.; Lv, F.; Li, T.; Han, Y. M.; Yi, Z. F.; Liu, M. Y.; Chang, J.; Wu, C. T. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano 2017, 11, 11337–11349.

150

Cheng, G.; Yin, C. C.; Tu, H.; Jiang, S.; Wang, Q.; Zhou, X.; Xing, X.; Xie, C. Y.; Shi, X. W.; Du, Y. M. et al. Controlled Co-delivery of growth factors through layer-by-layer assembly of core–shell nanofibers for improving bone regeneration. ACS Nano 2019, 13, 6372–6382.

151

Chen, W. M.; Chen, S.; Morsi, Y.; El-Hamshary, H.; El-Newhy, M.; Fan, C. Y.; Mo, X. M. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 24415–24425.

152

Liu, Y.; Zhou, S. Y.; Gao, Y. L.; Zhai, Y. L. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J. Pharm. Sci. 2019, 14, 130–143.

153

Yan, X.; Yu, M.; Ramakrishna, S.; Russell, S. J.; Long, Y. Z. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale 2019, 11, 19166–19178.

154

Nicholas, M. N.; Jeschke, M. G.; Amini-Nik, S. Cellularized bilayer pullulan-gelatin hydrogel for skin regeneration. Tissue Eng. Part A 2016, 22, 754–764.

155

Dai, X. Z.; Kathiria, K.; Huang, Y. C. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering. Biofabrication 2014, 6, 035005.

156

Millán-Rivero, J. E.; Martínez, C. M.; Romecín, P. A.; Aznar- Cervantes, S. D.; Carpes-Ruiz, M.; Cenis, J. L.; Moraleda, J. M.; Atucha, N. M.; García-Bernal, D. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res. Ther. 2019, 10, 126.

157

Ju, Y. M.; Choi, J. S.; Atala, A.; Yoo, J. J.; Lee, S. J. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 2010, 31, 4313–4321.

158

Norouzi, S. K.; Shamloo, A. Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater. Sci. Eng. : C 2019, 94, 1067–1076.

159

Ye, L.; Cao, J.; Chen, L. M.; Geng, X.; Zhang, A. Y.; Guo, L. R.; Gu, Y. Q.; Feng, Z. G. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. J. Biomed. Mater. Res. Part A 2015, 103, 3863–3871.

160

Dejob, L.; Toury, B.; Tadier, S.; Grémillard, L.; Gaillard, C.; Salles, V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater. 2021, 123, 123–153.

161

Szurkowska, K.; Kolmas, J. Hydroxyapatites enriched in silicon – Bioceramic materials for biomedical and pharmaceutical applications. Prog. Nat. Sci. : Mater. Int. 2017, 27, 401–409.

162

Bas, O.; De-Juan-Pardo, E. M.; Meinert, C.; D'Angella, D.; Baldwin, J. G.; Bray, L. J.; Wellard, R. M.; Kollmannsberger, S.; Rank, E.; Werner, C. et al. Biofabricated soft network composites for cartilage tissue engineering. Biofabrication 2017, 9, 025014.

163

Bas, O.; Lucarotti, S.; Angella, D. D.; Castro, N. J.; Meinert, C.; Wunner, F. M.; Rank, E.; Vozzi, G.; Klein, T. J.; Catelas, I. et al. Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chem. Eng. J. 2018, 340, 15–23.

164

Chen, H. L.; de Botelho Ferreira Braga Malheiro, A.; van Blitterswijk, C.; Mota, C.; Wieringa, P. A.; Moroni, L. Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 38187–38200.

165

Ghosh, S. K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S. D.; Tudu, B.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 2017, 36, 166–175.

166

Zhang, J.; Zhao, Y. T.; Hu, P. Y.; Liu, J. J.; Liu, X. F.; Hu, M. Z.; Cui, Z. M.; Wang, N.; Niu, Z. Y.; Xiang, H. F. et al. Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chem. Eng. J. 2020, 395, 125089.

167

Lee, J. K. Y.; Chen, N.; Peng, S. J.; Li, L. L.; Tian, L. L.; Thakor, N.; Ramakrishna, S. Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog. Polym. Sci. 2018, 86, 40–84.

168

Sonseca, A.; Sahay, R.; Stepien, K.; Bukala, J.; Wcislek, A.; McClain, A.; Sobolewski, P.; Sui, X. M.; Puskas, J. E.; Kohn, J. et al. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Mater. Sci. Eng. : C 2020, 108, 110505.

169

Allafchian, A.; Hosseini, H.; Ghoreishi, S. M. Electrospinning of PVA-carboxymethyl cellulose nanofibers for flufenamic acid drug delivery. Int. J. Biol. Macromol. 2020, 163, 1780–1786.

170

Choi, E. S.; Kim, H. C.; Muthoka, R. M.; Panicker, P. S.; Agumba, D. O.; Kim, J. Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber - Polyvinyl alcohol and its vibration energy harvesting. Compos. Sci. Technol. 2021, 209, 108795.

171

Yao, T. Y.; Chen, H. L.; Samal, P.; Giselbrecht, S.; Baker, M. B.; Moroni, L. Self-assembly of electrospun nanofibers into gradient honeycomb structures. Mater. Des. 2019, 168, 107614.

172

Xie, S.; Zeng, Y. C. Effects of electric field on multineedle electrospinning: Experiment and simulation study. Ind. Eng. Chem. Res. 2012, 51, 5336–5345.

173

Yang, Y.; Jia, Z. D.; Li, Q.; Hou, L.; Liu, J. N.; Wang, L. M.; Guan, Z. C.; Zahn, M. A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1592–1601.

174

Zhang, X. Q.; Wu, J.; Wang, J. T.; Zhang, J.; Yang, Q. Q.; Fu, Y. Y.; Xie, Z. Y. Highly conductive PEDOT: PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells. Solar Energy Mater. Solar Cells 2016, 144, 143–149.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 March 2021
Revised: 09 May 2021
Accepted: 12 May 2021
Published: 07 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We sincerely acknowledge the funding from Medical Scientific Research Foundation of Guangdong Province (No. A2021093), Science and Technology Planning Project of Shenzhen Municipality (No. YJ20180306174831458), Shenzhen Basic Research Project (No. JCYJ20190807155801657), National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2018ZX10301402), Key International (Regional) Joint Research Program of China (No. 5181001045), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06S029), and the National Natural Science Foundation of China (No. 51973243), China Postdoctoral Science Foundation (No. 2019M663246), the Fundamental Research Funds for the Central Universities (Nos. 191gzd35 and 20ykpy15), and Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110686).

Return