Journal Home > Volume 15 , Issue 2

Electrocatalytic N2 reduction provides an attractive alternative to Haber-Bosch process for artificial NH3 synthesis. The difficulty of suppressing competing proton reduction, however, largely impedes its practical use. Herein, we design a hydrophobic octadecanethiol- modified Fe3P nanoarrays supported on carbon paper (C18@Fe3P/CP) to effectively repel water, concentrate N2, and enhance N2-to-NH3 conversion. Such catalyst achieves an NH3 yield of 1.80 × 10–10 mol·s–1·cm–2 and a high Faradaic efficiency of 11.22% in 0.1 M Na2SO4, outperforming the non-modified Fe3P/CP (2.16 × 10-11 mol·s–1·cm–2, 0.9%) counterpart. Significantly, C18@Fe3P/CP renders steady N2-fixing activity/selectivity in cycling test and exhibits durability for at least 25 h. First-principles calculations suggest that the surface electronic structure and chemical activity of Fe3P can be well tuned by the thiol modification, which facilitates N2 electroreduction activity and catalytic formation of NH3.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays

Show Author's information Tong Xu1,2,§Jie Liang1,§Yuanyuan Wang3Shaoxiong Li1Zhaobai Du1Tingshuai Li1Qian Liu4Yonglan Luo4Fang Zhang5Xifeng Shi6Bo Tang6Qingquan Kong4Abdullah M. Asiri7Chun Yang2( )Dongwei Ma3( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of ChinaChengdu 610054 China
College of Chemistry and Materials Science Sichuan Normal UniversityChengdu 610068 China
Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering Henan UniversityKaifeng 475004 China
Institute for Advanced Study Chengdu UniversityChengdu 610106 China
National Engineering Research Center for Nanotechnology No. 28 East Jiang Chuan RoadShanghai 200241 China
College of Chemistry, Chemical Engineering and Materials Science Shandong Normal UniversityJinan 250014 China
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research King Abdulaziz University, P.O. Box 80203Jeddah 21589 Saudi Arabia

§ Tong Xu and Jie Liang contributed equally to this work.

Abstract

Electrocatalytic N2 reduction provides an attractive alternative to Haber-Bosch process for artificial NH3 synthesis. The difficulty of suppressing competing proton reduction, however, largely impedes its practical use. Herein, we design a hydrophobic octadecanethiol- modified Fe3P nanoarrays supported on carbon paper (C18@Fe3P/CP) to effectively repel water, concentrate N2, and enhance N2-to-NH3 conversion. Such catalyst achieves an NH3 yield of 1.80 × 10–10 mol·s–1·cm–2 and a high Faradaic efficiency of 11.22% in 0.1 M Na2SO4, outperforming the non-modified Fe3P/CP (2.16 × 10-11 mol·s–1·cm–2, 0.9%) counterpart. Significantly, C18@Fe3P/CP renders steady N2-fixing activity/selectivity in cycling test and exhibits durability for at least 25 h. First-principles calculations suggest that the surface electronic structure and chemical activity of Fe3P can be well tuned by the thiol modification, which facilitates N2 electroreduction activity and catalytic formation of NH3.

Keywords: surface modification, first-principles calculation, Fe3P nanoarrays, octadecanethiol, ambient N2 reduction

References(66)

1

Schlögl, R. Catalytic synthesis of ammonia—A "never-ending story". Angew. Chem. , Int. Ed. 2003, 42, 2004–2008.

2

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

3

Berry, G. D.; Martinez-Frias, J.; Espinosa-Loza, F.; Aceves, S. M. Hydrogen storage and transportation. In Encyclopedia of Energy. Cleveland, C. J., Ed.; Elsevier: Amsterdam, 2004; pp 267–281.

DOI
4

Jennings, J. R. Catalytic Ammonia Synthesis: Fundamentals and Practice; Spring Science & Business Media: New York, 1991.

DOI
5

Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.

6

Van des Ham, C. J. M.; Koper, T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

7

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

8

Guo, C. X.; Ran, J. R; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

9

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F., Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis–The selectivity challenge. ACS Catal. 2017, 7, 706–709.

10

Xu, T.; Liang, J.; Li, S. X.; Xu, Z. Q.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Asiri, A. M. et al. Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci. 2021, 1, 2000069.

11

Mao, S. D.; Duan, Z. H. A thermodynamic model for calculating nitrogen solubility, gas phase composition and density of the N2-H2O-NaCl system. Fluid Phase Equilib. 2006, 248, 103–114.

12

Zhou, F. L.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C. H.; Zhang X. Y.; MacFarlane, D. R. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10, 2516–2520.

13

Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.

14

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

15

Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

16

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. N2 electrochemical reduction: Achieving a record-high yield rate of 120.9 μgNH3·mgcat. −1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

17

Glazer, A. N.; Kechris, K. J. Conserved amino acid sequence features in the α subunits of MoFe, VFe, and FeFe nitrogenases. PLoS One 2009, 4, e6136.

18

Howard, J. B.; Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev. 1996, 96, 2965–2982.

19

Kong, J. M.; Lim, A.; Yoon, C. .; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995.

20

Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

21

Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.

22

Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332–11335.

23

Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

24

Zhao, X. H.; Lan, X.; Yu, D. K.; Fu, H.; Liu, Z. M.; Mu, T. C. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electroChemical N2 fixation under ambient conditions. Chem. Commun. 2018, 54, 13010–13013.

25

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon- nanotube-based electrocatalyst. Angew. Chem. , Int. Ed. 2017, 56, 2699–2703.

26

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

27

Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res., in press, DOI: 10.1007/s12274-020- 3276-9.

28

Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. L.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

29

Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.

30

Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.

31

Li, S. X.; Wang, Y. Y.; Liang, J.; Xu, T.; Ma, D. W.; Liu, Q.; Li, T. S.; Xu, S. R.; Chen, G.; Asiri, A. M. et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater. Today Phys. 2021, 18, 100396

32

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. , Int. Ed. 2018, 57, 6073–6076.

33

Zhao, R. B.; Geng, Q.; Chang, L.; Wei, P. P.; Luo, Y. L.; Shi, X. F.; Asiri, A. M. Lu, S. Y.; Wang, Z. M.; Sun, X. P. Cu3P nanoparticles- reduced graphene oxide hybrid: An efficient electrocatalyst to realize N2-to-NH3 conversion under ambient conditions. Chem. Commun. 2020, 56, 9328–9331.

34

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

35

Wang, T.; Li, S. X.; He, B. L.; Zhu, X. J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Ye, C.; Asiri, A. M. et al. Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chin. J. Catal. 2021, 42, 1024–1029.

36

Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17–24.

37

Wu, T. W.; Li, X. Y.; Zhu, X. J.; Mou, S. Y.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Zheng, B. Z.; Zhao, H. T. et al. P-doped graphene toward enhanced electrocatalytic N2 reduction. Chem. Commun. 2020, 56, 1831–1834.

38

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

39

Wang, T.; Liu, Q.; Li, T. S.; Lu, S. Y.; Chen, G.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Ma, D. W.; Sun, X. P. Magnetron sputtered Mo3Si thin film: An efficient electrocatalyst for N2 reduction under ambient conditions. J. Mater. Chem. A 2021, 9, 884–888.

40

Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

41

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

42

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. , Int. Ed. 2017, 56, 842–846.

43

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

44

Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

45

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

46

Blöchl, P. E. Projector Augmented-Wave method. Phys. Rev. B 1994, 50, 17953–17979.

47

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

48

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (Dft-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

49

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

50

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

51

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

52
NIST Chemistry WebBook. DOI: 10.18434/T4D303. http://webbook.nist.gov/chemistry/.
53

Pirim, C.; Pasek, M. A.; Sokolov, D. A.; Sidorov, A. N.; Gann, R. D.; Orlando, T. M. Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa Meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochim. Cosmochim. Acta 2014, 140, 259–274.

54

Colson, A. C.; Chen, C. W.; Morosan, E.; Whitmire, K. H. Synthesis of phase-pure ferromagnetic Fe3P films from single-source molecular precursors. Adv. Funct. Mater. 2012, 22, 1850–1855.

55

Chen, X. L.; Shi, T.; Zhong, K. L.; Wu, G. L.; Lu, Y. Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres. Chem. Eng. J. 2020, 379, 122240.

56

Devi, N. R.; Sasidharan, M.; Sundramoorthy, A. K. Gold nanoparticles- thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion. J. Electrochem. Soc. 2018, 165, B3046–B3053.

57

Love, J. C.; Estroff, L. A.; Kriebel, J. K. Nuzzo R. G., Whitesides. G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

58

Malkhandi, S.; Yang, B.; Manohar, A. K.; Prakash, G. K. S.; Narayanan, S. R. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes. J. Am. Chem. Soc. 2013, 135, 347–353.

59

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater. 2019, 18, 1222–1227.

60

Ahmed, M. I.; Liu, C. W.; Zhao, Y.; Ren, W. H.; Chen, X. J.; Chen, S.; Zhao, C. Metal-sulfur linkages achieved by organic tethering of Ruthenium nanocrystals for enhanced electrochemical nitrogen reduction. Angew. Chem. , Int. Ed. 2020, 59, 21465–21469.

61

Wang, J. H.; Yang, H.; Liu, Q. Q.; Liu, Q.; Li, X. T.; Lv, X. Z.; Cheng, T.; Wu, H. B. Fastening Br ions at copper-molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 2021, 6, 437–444.

62

Hammer, B.; Morikawa, Y.; Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.

63

Ma, D. W.; Zeng, Z. P.; Liu, L. L.; Huang, X. W.; Jia, Y. Computational evaluation of electrocatalytic nitrogen reduction on Tm single-, double-, and triple-atom catalysts (Tm = Mn, Fe, Co, Ni) based on graphdiyne monolayers. J. Phys. Chem. C 2019, 123, 19066–19076.

64

Ma, D. W.; Zeng, Z. P.; Liu, L. L.; Jia, Y. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction. J. Energy Chem. 2021, 54, 501–509.

65

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild- Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

66

Du, Z. B.; Liang J.; Li S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, DOI: 10.1039/D1TA02424H.

File
12274_2021_3592_MOESM1_ESM.pdf (9.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 March 2021
Revised: 29 April 2021
Accepted: 12 May 2021
Published: 01 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015), Shanghai Scientific and Technological Innovation Project (No. 18JC 1410604), and Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 20HASTIT028).

Return