Journal Home > Volume 15 , Issue 2

Flexible wearable electronics were developed for applications such as electronic skins, human–machine interactions, healthcare monitoring, and anti-infection therapy. But conventional materials showed impermeability, single sensing ability, and no designated therapy, which hindered their applications. Thus it was still a great challenge to develop electronic devices with multifunctional sensing properties and self-driven anti-infection therapy. Herein, flexible and breathable on-skin electronic devices for multifunctional fabric based sensing and self-driven designated anti-infection therapy were prepared successfully with cellulose nanocrystals/iron(Ⅲ) ion/polyvinyl alcohol (CNC/Fe3+/PVA) composite. The resultant composite films possessed robust mechanical performances, outstanding conductivity, and distinguished breathability (3.03 kg/(m2·d)), which benefited from the multiple interactions of weak hydrogen bonds and Fe3+ chelation and synergistic effects among CNC, polyaniline (PANI), and PVA. Surprisingly, the film could be assembled as a multifunctional sensor to actively monitor real-time physical and infection related signals such as temperature, moisture, pH, NH3, and human movements even at sweat states. More importantly, this multifunctional device could act as a self-driven therapist to eliminate bacterial by the release of Fe3+, which was driven by the damage of metal coordination Fe–O bonds due to the high temperature caused by infection at wound sites. Thus, the composite films had potential versatile applications in electronic skins, smart wound dressings, human–machine interactions, and self-driven anti-infection therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Versatile sensing devices for self-driven designated therapy based on robust breathable composite films

Show Author's information Zhaofeng Ouyang1Songbo Cui2Houyong Yu1,2Dewen Xu1Chuang Wang1Dongping Tang1Kam Chiu Tam2
Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech UniversityHangzhou 310018 China
Department of Chemical Engineering Waterloo Institute for Nanotechnology, University of WaterlooWaterloo ON N2L 3G1 Canada

Abstract

Flexible wearable electronics were developed for applications such as electronic skins, human–machine interactions, healthcare monitoring, and anti-infection therapy. But conventional materials showed impermeability, single sensing ability, and no designated therapy, which hindered their applications. Thus it was still a great challenge to develop electronic devices with multifunctional sensing properties and self-driven anti-infection therapy. Herein, flexible and breathable on-skin electronic devices for multifunctional fabric based sensing and self-driven designated anti-infection therapy were prepared successfully with cellulose nanocrystals/iron(Ⅲ) ion/polyvinyl alcohol (CNC/Fe3+/PVA) composite. The resultant composite films possessed robust mechanical performances, outstanding conductivity, and distinguished breathability (3.03 kg/(m2·d)), which benefited from the multiple interactions of weak hydrogen bonds and Fe3+ chelation and synergistic effects among CNC, polyaniline (PANI), and PVA. Surprisingly, the film could be assembled as a multifunctional sensor to actively monitor real-time physical and infection related signals such as temperature, moisture, pH, NH3, and human movements even at sweat states. More importantly, this multifunctional device could act as a self-driven therapist to eliminate bacterial by the release of Fe3+, which was driven by the damage of metal coordination Fe–O bonds due to the high temperature caused by infection at wound sites. Thus, the composite films had potential versatile applications in electronic skins, smart wound dressings, human–machine interactions, and self-driven anti-infection therapy.

Keywords: composite films, cellulose nanocrystals, polyvinyl alcohol, mechanical performances

References(60)

1

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

2

Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo- rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260–1269.

3

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

4

Meng, K. Y.; Zhao, S. L.; Zhou, Y. H.; Wu, Y. F.; Zhang, S. L.; He, Q.; Wang, X.; Zhou, Z. H.; Fan, W. J.; Tan, X. L. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020, 2, 896–907.

5

Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

6

Xie, Y. S.; Xie, R.; Yang, H. C.; Chen, Z. W.; Hou, J. W.; López- Barrón, C. R.; Wagner, N. J.; Gao, K. Z. Iono-elastomer-based wearable strain sensor with real-time thermomechanical dual response. ACS Appl. Mater. Interfaces 2018, 10, 32435–32443.

7

Xiao, X.; Chen, G. R.; Libanori, A.; Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 2021, 3, 279–290.

8

Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

9

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

10

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin- attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

11

Wu, H. X.; Su, Z. M.; Shi, M. Y.; Miao, L. M.; Song, Y.; Chen, H. T.; Han, M. D.; Zhang, H. X. Self-powered noncontact electronic skin for motion sensing. Adv. Funct. Mater. 2018, 28, 1704641.

12

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

13

Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

14

Pang, Q.; Lou, D.; Li, S. J.; Wang, G. M.; Qiao, B. B.; Dong, S. R.; Ma, L.; Gao, C. Y.; Wu, Z. H. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 2020, 7, 1902673.

15

Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.

16

Guo, S. Z.; Qiu, K. Y.; Meng, F. B.; Park, S. H.; McAlpine, M. C. 3D printed stretchable tactile sensors. Adv. Mater. 2017, 29, 1701218.

17

He, J. H.; Shi, M. T.; Liang, Y. P.; Guo, B. L. Conductive adhesive self- healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020, 394, 124888.

18

Tavakoli, S.; Klar, A. S. Advanced hydrogels as wound dressings. Biomolecules 2020, 10, 1169.

19

Pan, N.; Qin, J. R.; Feng, P. P.; Li, Z. K.; Song, B. T. Color-changing smart fibrous materials for naked eye real-time monitoring of wound pH. J. Mater. Chem. B 2019, 7, 2626–2633.

20

Gamerith, C.; Luschnig, D.; Ortner, A.; Pietrzik, N.; Guse, J. H.; Burnet, M.; Haalboom, M.; van der Palen, J.; Heinzle, A.; Sigl, E. et al. pH-responsive materials for optical monitoring of wound status. Sens. Actuator B: Chem. 2019, 301, 126966.

21

Huang, J. N.; Xu, Z. J.; Qiu, W.; Chen, F.; Meng, Z. H.; Hou, C.; Guo, W. X.; Liu, X. Y. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 2020, 30, 1910547.

22

Song, M. L.; Yu, H. Y.; Zhu, J. Y.; Ouyang, Z. F.; Abdalkarim, S. Y. H.; Tam, K. C.; Li, Y. Z. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 2020, 398, 125547.

23

Zhu, M. H.; Yu, H. Y.; Tang, F.; Li, Y. Z.; Liu, Y. N.; Yao, J. M. Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem. Eng. J. 2020, 394, 124855.

24

Wang, D. C.; Yu, H. Y.; Qi, D. M.; Ramasamy, M.; Yao, J. M.; Tang, F.; Tam, K. C.; Ni, Q. Q. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl. Mater. Interfaces 2019, 11, 24435–24446.

25

Xiao, G.; He, J.; Chen, X. D.; Qiao, Y.; Wang, F.; Xia, Q. Y.; Yu, L.; Lu, Z. S. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 2019, 26, 4553–4562.

26

Heo, J. S.; Hossain, M. F.; Kim, I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review. Sensors 2020, 20, 3927.

27

Yang, Y.; Huang, Q. B.; Payne, G. F.; Sun, R. C.; Wang, X. H. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 2019, 11, 725–732.

28

Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034–25042.

29

Sala de Medeiros, M.; Chanci, D.; Martinez, R. V. Moisture- insensitive, self-powered paper-based flexible electronics. Nano Energy 2020, 78, 105301.

30

Zheng, S. D.; Wu, X. T.; Huang, Y. H.; Xu, Z. W.; Yang, W.; Liu, Z. Y.; Yang, M. B. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture. Compos. Sci. Technol. 2020, 197, 108255.

31

Lin, X. Z.; Gao, S.; Fei, T.; Liu, S.; Zhao, H. R.; Zhang, T. Study on a paper-based piezoresistive sensor applied to monitoring human physiological signals. Sens. Actuators A: Phys. 2019, 292, 66–70.

32

Lin, Z. M.; Yang, J.; Li, X. S.; Wu, Y. F.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 2018, 28, 1704112.

33

Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

34

Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I. K.; Bagherifard, S.; Dokmeci, M. R.; Ziaie, B. et al. Smart bandage for monitoring and treatment of chronic wounds. Small 2018, 14, 1703509.

35

Widmer, S.; Dorrestijn, M.; Camerlo, A.; Urek, Š. K.; Lobnik, A.; Housecroft, C. E.; Constable, E. C.; Scherer, L. J. Coumarin meets fluorescein: A förster resonance energy transfer enhanced optical ammonia gas sensor. Analyst 2014, 139, 4335–4342.

36

Chen, W.; Laiho, S.; Vaittinen, O.; Halonen, L.; Ortiz, F.; Forsblom, C.; Groop, P. H.; Lehto, M.; Metsälä, M. Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis. J. Breath Res. 2016, 10, 036011.

37

Yu, H. Y.; Abdalkarim, S. Y. H.; Zhang, H.; Wang, C.; Tam, K. C. Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustain. Chem. Eng. 2019, 7, 4912–4923.

38

Azizi, S.; Ahmad, M.; Mahdavi, M.; Abdolmohammadi, S. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources 2013, 8, 1841–1851.

39

Shao, C. Y.; Wang, M.; Meng, L.; Chang, H. L.; Wang, B.; Xu, F.; Yang, J.; Wan, P. B. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 2018, 30, 3110–3121.

40

Liu, Y. J.; Cao, W. T.; Ma, M. G.; Wan, P. B. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic "soft and hard" hybrid networks. ACS Appl. Mater. Interfaces 2017, 9, 25559–25570.

41

Zhang, G. Y.; Liu, Y.; Morikawa, H.; Chen, Y. Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 2013, 20, 1877–1884.

42

Yu, H. Y.; Chen, G. Y.; Wang, Y. B.; Yao, J. M. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 2015, 22, 261–273.

43

Fang, Y. C.; Liu, X. H.; Tao, X. C. Intumescent flame retardant and anti-dripping of pet fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. Prog. Org. Coat. 2019, 134, 162–168.

44

Lu, J.; Wang, T.; Drzal, L. T. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 738–746.

45

Han, L.; Cui, S. B.; Yu, H. Y.; Song, M. L.; Zhang, H. Y.; Grishkewich, N.; Huang, C. G.; Kim, D.; Tam, K. M. C. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems. ACS Appl. Mater. Interfaces 2019, 11, 44642–44651.

46

Chen, Y. X.; Zhu, J. Y.; Yu, H. Y.; Li, Y. Z. Fabricating robust soft-hard network of self-healable polyvinyl alcohol composite films with functionalized cellulose nanocrystals. Compos. Sci. Technol. 2020, 194, 108165.

47

Xu, H. Y.; Xie, Y. Y.; Zhu, E. W.; Liu, Y.; Shi, Z. Q.; Xiong, C. X.; Yang, Q. L. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 2020, 8, 6311–6318.

48

Dong, L. B.; Xu, C. J.; Li, Y.; Pan, Z. Z.; Liang, G. M.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 2016, 28, 9313–9319.

49

Qiu, Q.; Zhu, M. M.; Li, Z. L.; Qiu, K. L.; Liu, X. Y.; Yu, J. Y.; Ding, B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019, 58, 750–758.

50

Li, Y.; Yang, F. F.; Yu, J. Y.; Ding, B. Hydrophobic fibrous membranes with tunable porous structure for equilibrium of breathable and waterproof performance. Adv. Mater. Interfaces 2016, 3, 1600516.

51

Sheng, J. L.; Zhang, M.; Xu, Y.; Yu, J. Y.; Ding, B. Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane. ACS Appl. Mater. Interfaces 2016, 8, 27218–27226.

52

Li, W.; Zeng, X. P.; Wang, H.; Wang, Q.; Yang, Y. J. Polyaniline- poly(styrene sulfonate) conducting hydrogels reinforced by supramolecular nanofibers and used as drug carriers with electric- driven release. Eur. Polym. J. 2015, 66, 513–519.

53

Ouyang, Z. F.; Yu, H. Y.; Song, M. L.; Zhu, J. Y.; Wang, D. C. Ultrasensitive and robust self-healing composite films with reinforce­ment of multi-branched cellulose nanocrystals. Compos. Sci. Technol. 2020, 198, 108300.

54

Zheng, Y. J.; Li, Y. L.; Dai, K.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 2018, 156, 276–286.

55

Li, Z.; Qi, X. M.; Xu, L.; Lu, H. H.; Wang, W. J.; Jin, X. X.; Islam, Z.; Zhu, Y. F.; Fu, Y. Q.; Ni, Q. Q. et al. Self-repairing, large linear working range shape memory carbon nanotubes/ethylene vinyl acetate fiber strain sensor for human movement monitoring. ACS Appl. Mater. Interfaces 2020, 12, 42179–42192.

56

Kim, H. W.; Kim, T. Y.; Park, H. K.; You, I.; Kwak, J.; Kim, J. C.; Hwang, H.; Kim, H. S.; Jeong, U. Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Appl. Mater. Interfaces 2018, 10, 40141–40148.

57

Wu, R. H.; Ma, L. Y.; Hou, C.; Meng, Z. H.; Guo, W. X.; Yu, W. D.; Yu, R.; Hu, F.; Liu, X. Y. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019, 15, 1901558.

58

Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

59

Liu, C. H.; Tai, H. L.; Zhang, P.; Yuan, Z.; Du, X. S.; Xie, G. Z.; Jiang, Y. D. A high-performance flexible gas sensor based on self- assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuator B: Chem. 2018, 261, 587–597.

60

Liu, C. H.; Tai, H. L.; Zhang, P.; Ye, Z. B.; Su, Y. J.; Jiang, Y. D. Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature. Sens. Actuator B: Chem. 2017, 246, 85–95.

File
12274_2021_3591_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 March 2021
Revised: 11 May 2021
Accepted: 12 May 2021
Published: 24 June 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Key Foundation of China (No. LZ20E030003), the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2019Q001), and the Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001).

Return