Journal Home > Volume 15 , Issue 2

Using simple methods to obtain efficient catalysts has been a long-standing goal for researchers. In this work, the employment of a one-pot pyrolysis reaction to achieve molecular confinement, has led to the preparation of ruthenium (Ru)-based nanoclusters in a carbon matrix. A unique feature of the synthetic approach employed is that solvent and substrates were calcined together. As solvent evaporates, during calcination, the substrates form a dense solid which has the effect of limiting the aggregation of Ru centers during the carbonization process. The catalyst prepared in this simple manner showed an impressively high activity with respect to the hydrogen/oxygen evolution reaction (HER/OER). The Ru nanoclusters (Ru NCs), as the hydrogen evolution reaction (HER) catalysts, require ultralow overpotentials of 5 mV and 5.1 mV at –10 mA·cm–2 in 1.0 M KOH, and 0.5 M H2SO4, respectively. Furthermore, the catalyst prepared by the one-pot method has higher crystallinity, a higher Ru content and an ultrafine cluster size, which contributes to its exceptional electrochemical performance. Meanwhile, the RuOX nanoclusters (RuOX NCs), obtained by oxidizing the aforementioned Ru NCs, exhibited good oxygen evolution reaction (OER) performance with an overpotential of 266 mV at 10 mA·cm–2. When applied to overall water splitting, Ru/RuOX nanoclusters as the cathode and anode catalysts can reach 10 mA·cm–2 at cell voltages of only 1.49 V in 1 M KOH.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting

Show Author's information Fengyuan Zhu1Jiangyan Xue1Lingjian Zeng1Jingrui Shang1Shuanglong Lu2Xueqin Cao1Brendan F. Abrahams3Hongwei Gu1( )Jianping Lang1( )
College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
School of Chemistry University of Melbourne Victoria 3010 Australia

Abstract

Using simple methods to obtain efficient catalysts has been a long-standing goal for researchers. In this work, the employment of a one-pot pyrolysis reaction to achieve molecular confinement, has led to the preparation of ruthenium (Ru)-based nanoclusters in a carbon matrix. A unique feature of the synthetic approach employed is that solvent and substrates were calcined together. As solvent evaporates, during calcination, the substrates form a dense solid which has the effect of limiting the aggregation of Ru centers during the carbonization process. The catalyst prepared in this simple manner showed an impressively high activity with respect to the hydrogen/oxygen evolution reaction (HER/OER). The Ru nanoclusters (Ru NCs), as the hydrogen evolution reaction (HER) catalysts, require ultralow overpotentials of 5 mV and 5.1 mV at –10 mA·cm–2 in 1.0 M KOH, and 0.5 M H2SO4, respectively. Furthermore, the catalyst prepared by the one-pot method has higher crystallinity, a higher Ru content and an ultrafine cluster size, which contributes to its exceptional electrochemical performance. Meanwhile, the RuOX nanoclusters (RuOX NCs), obtained by oxidizing the aforementioned Ru NCs, exhibited good oxygen evolution reaction (OER) performance with an overpotential of 266 mV at 10 mA·cm–2. When applied to overall water splitting, Ru/RuOX nanoclusters as the cathode and anode catalysts can reach 10 mA·cm–2 at cell voltages of only 1.49 V in 1 M KOH.

Keywords: pyrolysis, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, ruthenium nanoclusters, ruthenium dioxide nanoclusters

References(34)

1

Zhang, M. T.; Chen, J. X.; Li, H.; Cai, P. W.; Li, Y.; Wen, Z. H. Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. Nano Energy 2019, 61, 576–583.

2

Yu, J. Y.; Li, G. X.; Liu, H.; Zhao, L. L.; Wang, A. Z.; Liu, Z.; Li, H. D.; Liu, H.; Hu, Y. Y.; Zhou, W. J. Ru-Ru2PΦNPC and NPC@RuO2 synthesized via environment-friendly and solid-phase phosphating process by saccharomycetes as N/P sources and carbon template for overall water splitting in acid electrolyte. Adv. Funct. Mater. 2019, 29, 1901554.

3

Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

4

Yoon, H.; Song, H. J.; Ju, B.; Kim, D. W. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469–2477.

5

Qin, R.; Hou, J. G.; Xu, C. X.; Yang, H. X.; Zhou, Q. X.; Chen, Z. Z.; Liu, H. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Res. 2020, 13, 2950–2957.

6

Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

7

Sun, J.; Zhang, X.; Jin, M.; Xiong, Q. Z.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts. Nano Res. 2021, 14, 268–274.

8

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

9

Li, Y.; Chen, J. X.; Huang, J. H.; Hou, Y.; Lei, L. C.; Lin, W. Z.; Lian, Y. P.; Xiang, Z. H.; Yang, H. H.; Wen, Z. H. Interfacial engineering of Ru–S–Sb/antimonene electrocatalysts for highly efficient electrolytic hydrogen generation in neutral electrolyte. Chem. Commun. 2019, 55, 10884–10887.

10

Liu, H. D.; Shang, J. R.; Zeng, L. J.; Cao, B. B.; Geng, H. B.; Lang, J. P.; Cao, X. Q.; Gu, H. W. A setaria-shaped Pd/Ni-NC electrocatalyst for high efficient hydrogen evolution reaction. Chem. Eng. J. Adv. 2021, 6, 100101.

11

Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L. et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.

12

He, T.; Peng, Y.; Li, Q. X.; Lu, J. E.; Liu, Q. M.; Mercado, R.; Chen, Y.; Nichols, F.; Zhang, Y.; Chen, S. W. Nanocomposites based on ruthenium nanoparticles supported on cobalt and nitrogen-codoped graphene nanosheets as bifunctional catalysts for electrochemical water splitting. ACS Appl. Mater. Interfaces 2019, 11, 46912–46919.

13

Barman, B. K.; Sarkar, B.; Nanda, K. K. Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chem. Commun. 2019, 55, 13928–13931.

14

Li, P. S.; Duan, X. X.; Wang, S. Y.; Zheng, L. R.; Li, Y. P.; Duan, H. H.; Kuang, Y.; Sun, X. M. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range. Small 2019, 15, 1904043.

15

Sun, S. W.; Wang, G. F.; Zhou, Y.; Wang, F. B.; Xia, X. H. High- performance Ru@C4N electrocatalyst for hydrogen evolution reaction in both acidic and alkaline solutions. ACS Appl. Mater. Interfaces 2019, 11, 19176–19182.

16

Chen, H.; Ai, X.; Liu, W.; Xie, Z. B.; Feng, W. Q.; Chen, W.; Zou, X. X. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 11409–11413.

17

Wang, H. Y.; Gao, C. Y.; Li, R.; Peng, Z. K.; Yang, J. H.; Gao, J.; Yang, Y. P.; Li, S. H.; Li, B. J.; Liu, Z. Y. Ruthenium-cobalt nanoalloy embedded within hollow carbon spheres as a bifunctionally robust catalyst for hydrogen generation from water splitting and ammonia borane hydrolysis. ACS Sustainable Chem. Eng. 2019, 7, 18744–18752.

18

Liu, J. W.; Ding, G. Z.; Yu, J. Y.; Liu, X. G.; Zhang, X. F.; Guo, J. J.; Zhang, J. C.; Ren, W.; Che, R. C. Visualizing spatial potential and charge distribution in Ru/N-doped carbon electrocatalysts for superior hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 18072–18080.

19

Li, J. C.; Zhou, Q. W.; Shen, Z. H.; Li, S. W.; Pu, J.; Zhong, C. L.; Cao, M. Q.; Jin, X.; Zhang, H. G.; Wang, Y. Y. et al. Synergistic effect of ultrafine nano-Ru decorated cobalt carbonate hydroxides nanowires for accelerated alkaline hydrogen evolution reaction. Electrochim. Acta 2020, 331, 135367.

20

Ming, M.; Zhang, Y.; He, C.; Zhao, L.; Niu, S.; Fan, G. Y.; Hu, J. S. Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019, 15, 1903057.

21

Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.

22

Hu, Q.; Li, G. M.; Huang, X. W.; Wang, Z. Y.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Electronic structure engineering of single atomic Ru by Ru nanoparticles to enable enhanced activity for alkaline water reduction. J. Mater. Chem. A 2019, 7, 19531–19538.

23

Li, M. X.; Wang, H. Y.; Zhu, W. D.; Li, W. M.; Wang, C.; Lu, X. F. RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting. Adv. Sci. 2020, 7, 1901833.

24

Wu, W.; Wu, Y.; Zheng, D.; Wang, K.; Tang, Z. H. Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at all-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. Electrochim. Acta 2019, 320, 134568.

25

Qin, X. P.; Zhang, L. L.; Xu, G. L.; Zhu, S. Q.; Wang, Q.; Gu, M.; Zhang, X. Y.; Sun, C. J.; Balbuena, P. B.; Amine, K. et al. The role of Ru in improving the activity of Pd toward hydrogen evolution and oxidation reactions in alkaline solutions. ACS Catal. 2019, 9, 9614–9621.

26

Guo, J. X.; Yan, D. Y.; Qiu, K. W.; Mu, C.; Jiao, D.; Mao, J.; Wang, H.; Ling, T. High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst. J. Energy Chem. 2019, 37, 143–147.

27

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

28

Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

29

Chi, J. Q.; Zhang, X. Y.; Ma, X.; Dong, B.; Zhang, J. Q.; Guo, B. Y.; Yang, M.; Wang, L.; Chai, Y. M.; Liu, C. G. Interface charge engineering of ultrafine Ru/Ni2P nanoparticles encapsulated in N, P-codoped hollow carbon nanospheres for efficient hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 17714–17722.

30

Barman, B. K.; Sarkar, B.; Ghosh, P.; Ghosh, M.; Rao, G. M.; Nanda, K. K. In situ decoration of ultrafine Ru nanocrystals on N-doped graphene tube and their applications as oxygen reduction and hydrogen evolution catalyst. ACS Appl. Energy Mater. 2019, 2, 7330–7339.

31

Liu, Y.; Yang, Y. P.; Peng, Z. K.; Liu, Z. Y.; Chen, Z. M.; Shang, L.; Lu, S. Y.; Zhang, T. R. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy 2019, 65, 104023.

32

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an mxene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, 1903841.

33

Liu, G. G.; Zhou, W.; Chen, B.; Zhang, Q. H.; Cui, X. Y.; Li, B.; Lai, Z. C.; Chen, Y.; Zhang, Z. C.; Gu, L. et al. Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy 2019, 66, 104173.

34

Niu, S. Q.; Li, S. W.; Hu, J.; Li, Y. Z.; Du, Y. C.; Han, X. J.; Xu, P. Fabrication of uniform Ru-doped NiFe2O4 nanosheets as an efficient hydrogen evolution electrocatalyst. Chem. Commun. 2019, 55, 14649–14652.

File
12274_2021_3590_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 March 2021
Revised: 22 April 2021
Accepted: 12 May 2021
Published: 04 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21531006 and 21773163), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201905) and the Research Fund Program of Key Laboratory of Rare Mineral, MNR (No. KLRM-KF202004). We sincerely thank the Analysis and Testing Centre of Soochow University for the help in TEM measurements. We are grateful to the useful comments and suggestions from the editor and the reviewers.

Return