Journal Home > Volume 15 , Issue 2

Interlayer coupling as a unique feature for two-dimensional (2D) materials may influence their thickness-dependent physical properties, especially the bandgap due to quantum confinement effect. Widely-studied 2D materials usually possess strong interlayer coupling such as most of transition metal dichalcogenides (TMDs), PtS2 and so on. However, 2D materials with weak interlayer coupling are rarely referred that mainly focus on ReS2, as well as its counterpart ReSe2. Here we report a new member of weak interlayer coupling 2D materials, germanium disulfide (GeS2). The interlayer interaction in GeS2 is investigated from theory to experiment. By density functional theory calculations, we find that this extraordinarily weak interlayer coupling in GeS2 originates from the weak hybridization of interlayer S atoms. Thickness-dependent Raman spectra of GeS2 flakes exhibit that the Raman peaks remain unchanged when increasing the thickness; and a small first-order temperature coefficient of –0.00857 cm−1·K−1 is obtained from the temperature-dependent Raman spectra. These experimental results further confirm the weak interlayer coupling in GeS2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Investigation of weak interlayer coupling in 2D layered GeS2 from theory to experiment

Show Author's information Hui-Juan Yan1,3Zongbao Li2( )Shun-Chang Liu1,3Xia Wang2Xing Zhang1,3Ding-Jiang Xue1,3( )Jin-Song Hu1,3
Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
School of Material and Chemical Engineering Institute of Cultural and Technological Industry Innovation of Tongren Tongren University Tongren 554300 China
University of Chinese Academy of Sciences Beijing 100049 China

Abstract

Interlayer coupling as a unique feature for two-dimensional (2D) materials may influence their thickness-dependent physical properties, especially the bandgap due to quantum confinement effect. Widely-studied 2D materials usually possess strong interlayer coupling such as most of transition metal dichalcogenides (TMDs), PtS2 and so on. However, 2D materials with weak interlayer coupling are rarely referred that mainly focus on ReS2, as well as its counterpart ReSe2. Here we report a new member of weak interlayer coupling 2D materials, germanium disulfide (GeS2). The interlayer interaction in GeS2 is investigated from theory to experiment. By density functional theory calculations, we find that this extraordinarily weak interlayer coupling in GeS2 originates from the weak hybridization of interlayer S atoms. Thickness-dependent Raman spectra of GeS2 flakes exhibit that the Raman peaks remain unchanged when increasing the thickness; and a small first-order temperature coefficient of –0.00857 cm−1·K−1 is obtained from the temperature-dependent Raman spectra. These experimental results further confirm the weak interlayer coupling in GeS2.

Keywords: two-dimensional, temperature coefficient, interlayer coupling, GeS2

References(45)

1

Liu, S. C.; Yang, Y. S.; Li, Z. B.; Xue, D. J.; Hu, J. S. GeSe thin-film solar cells. Mater. Chem. Front. 2020, 4, 775–787.

2

Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715–7736.

3

Liu, S. C.; Li, Z. B.; Wu, J. P.; Zhang, X.; Feng, M. J.; Xue, D. J.; Hu, J. S. Boosting the efficiency of GeSe solar cells by low temperature treatment of p-n junction. Sci. China Mater. 2021, 64, 2118–2126.

4

Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976–14982.

5

Su, J. W.; Liu, G. H.; Liu, L. X.; Chen, J. Z.; Hu, X. Z.; Li, Y.; Li, H. Q.; Zhai, T. Y. Recent advances in 2D group VB transition metal chalcogenides. Small 2021, 17, 2005411.

6

Zhong, M. Z.; Xia, Q. L.; Pan, L. F.; Liu, Y. Q.; Chen, Y. B.; Deng, H. X.; Li, J. B.; Wei, Z. M. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater. 2018, 28, 1802581.

7

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

8

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two- dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

9

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

10
Dileep, K.; Sahu, R.; Sarkar, S.; Peter, S. C.; Datta, R. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy. J. Appl. Phys. 2016, 119. 114309https://doi.org/10.1063/1.4944431
DOI
11

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

12

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

13

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

14

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

15

Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

16

Zhou, J. D.; Kong, X. H.; Mutyala, C.; Lin, J. H.; Le Goualher, F.; Xu, R.; Wang, X. W.; Chen, Y.; Zhou, Y.; Zhu, C. et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 2019, 13, 10929–10938.

17

Feng, X.; Sun, Z. D.; Pei, K.; Han, W.; Wang, F. K.; Luo, P.; Su, J. W.; Zuo, N.; Liu, G.; Li, H. Q. et al. 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Adv. Mater. 2020, 32, 2003146.

18

Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.

19

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

20

Kresse, G.; Furthműller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

21

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X. L.; Burke K. Restoring the density- gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 039902.

22

Guan, J.; Song, W. S.; Yang, L.; Tománek, D. Strain-controlled fundametal gap and structure of bulk phosphorus. Phys. Rev. B 2016, 94, 045414.

23

Chu, X.; Dalgarno, A. Linear response time-dependent density functional theory for van der Waals coefficients. J. Chem. Phys. 2004, 121, 4083–4088.

24

Zeidler, A.; Drewitt, J. W. E.; Salmon, P. S.; Barnes, A. C.; Crichton, W. A.; Klotz, S.; Fischer, H. E.; Benmore, C. J.; Ramos, S.; Hannon, A. C. Establishing the structure of GeS2 at high pressures and tem­perature: A combined approach using x-ray and neutron diffraction. J. Phys. Condens. Matter. 2009, 21, 474217.

25

Maclaclan, M. J.; Petrov, S.; Bedrad, R. L.; Manners, I.; Ozin, G. A. Synthesis and crystal structure of δ-GeS2, the first germanium sulfide with an expanded framework structure. Angew. Chem. Int. Ed. 1998, 37, 2075.

DOI
26

Wang, X. D.; Tan, J. L.; Han, C. Q.; Wang, J. J.; Lu, L.; Du, H. C.; Jia, C. L.; Deringer, V. L.; Zhou, J.; Zhang, W. Sub-angstrom characterization of the structural origin for high in-plane anisotropy in 2D GeS2. ACS Nano 2020, 14, 4456–4462.

27
Yang, Y. S.; Wang, X.; Liu, S. C.; Li, Z. B.; Sun, Z. Y.; Hu, C. G.; Xue, D. J.; Zhang, G. M.; Hu, J. S. Weak interlayer interaction in 2D anisotropic GeSe2. Adv. Sci. 2019, 6. 1801810.https://doi.org/10.1002/advs.201801810
DOI
28

Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

29

Chen, H.; Keiser, C.; Du, S. X.; Gao, H. J.; Sutter, P.; Sutter, E. Termination of Ge surfaces with ultrathin GeS and GeS2 layers via solid-state sulfurization. Phys. Chem. Chem. Phys. 2017, 19, 32473– 32480.

30

Hart, T. R.; Aggarwal, R. L.; Lax, B. Temperature dependence of Raman scattering in silicon. Phys. Rev. B-Solid. St. 1970, 1, 638–642.

31

Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

32

Liu, S. J.; Huo, N. J.; Gan, S.; Li, Y.; Wei, Z. M.; Huang, B. J.; Liu, J.; Li, J. B.; Chen, H. D. Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 2015, 3, 10974–10980.

33

Zhao, K. Y.; Huang, F. M.; Dai, C. M.; Li, W. W.; Chen, S. Y.; Jiang, K.; Huang, Y. P.; Hu, Z. G.; Chu, J. H. Temperature dependence of phonon modes, optical constants, and optical band gap in two- dimensional ReS2 films. J. Phys. Chem. C 2018, 122, 29464–29469.

34

Li, W. W.; Jiang, K.; Zhang, J. Z.; Chen, X. G.; Hu, Z. G.; Chen, S. Y.; Sun, L.; Chu, J. H. Temperature dependence of phonon modes, dielectric functions, and interband electronic transitions in Cu2ZnSnS4 semiconductor films. Phys. Chem. Chem. Phys. 2012, 14, 9936–9941.

35

Jakšić, Z. M. Temperature and pressure dependence of phonon frequencies in GeS2, GeSe2, and SnGeS3. Phys. Status Solidi. B 2003, 239, 131–143.

36

Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 1966, 148, 845.

37

Pawbake, A. S.; Date, A.; Jadkar, S. R.; Late, D. J. Temperature dependent Raman spectroscopy and sensing behavior of few layer SnSe2 nanosheets. Chemistryselect 2016, 1, 5380–5387.

38

Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light- scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934.

39

Zouboulis, E. S.; Grimsditch, M. Raman-scattering in diamond up to 1900 K. Phys. Rev. B 1991, 43, 12490–12493.

40

Łapińska, A.; Taube, A.; Judek, J.; Zdrojek, M. Temperature evolution of phonon properties in few-layer black phosphorus. J. Phys. Chem. C 2016, 120, 5265–5270.

41
Zhou, W.; Yu, Z. H.; Song, H.; Fang, R. Y.; Wu, Z. T.; Li, L.; Ni, Z. H.; Ren, W.; Wang, L.; Ruan, S. C. Lattice dynamics in monolayer and few-layer SnSe2. Phys. Rev. B 2017, 96. 035401.https://doi.org/10.1103/PhysRevB.96.035401
DOI
42

Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

43

Xia, J.; Li, X. Z.; Huang, X.; Mao, N. N.; Zhu, D. D.; Wang, L.; Xu, H.; Meng, X. M. Physical vapor deposition synthesis of two- dimensional orthorhombic SnS flakes with strong angle/temperature- dependent Raman responses. Nanoscale 2016, 8, 2063–2070.

44

Luo, S. W.; Qi, X.; Yao, H.; Ren, X. H.; Chen, Q.; Zhong, J. X. Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 2017, 121, 4674–4679.

45

Taube, A.; Lapinska, A.; Judek, J.; Zdrojek, M. Temperature dependence of Raman shifts in layered ReSe2 and SnSe2 semiconductor nanosheets. Appl. Phys. Lett. 2015, 107, 013105.

File
12274_2021_3589_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2021
Revised: 26 April 2021
Accepted: 13 May 2021
Published: 23 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21922512, 21972147, 21875264, 61725401, and 11964032), the Youth Innovation Promotion Association CAS (No. 2017050), the National Natural Science Foundation of Guizhou Province (Nos. KY[2019]060, [2020]123, and trxyDH1905).

Return