Journal Home > Volume 14 , Issue 9

As the scaling down of Si devices in the range less than few nm has been expedited up to a physical limit of Si, low dimensional materials have been regarded as one of next generation semiconductors. Among a variety of applications, studies on photodetectors have been actively investigated with their novel optical properties as well as astonishing electrical properties. However, most of research has focused on single device-type photodetector (i.e., photo-diode or photo-transistor). Contrary to common photodetector, light-to-frequency circuits (LFCs) are based on frequency reading with photosensitive ring oscillators, which has better noise immunity and reduced system complexity, thus, can be utilized to novel application even in internet of things (IoT) and bio & medical fields. In this review, low dimensional materials based circuit level photodetectors, which are core elements as the form of either inverters or ring oscillators for demonstration of LFCs, are introduced. Along with the introduction of low dimensional materials and their optical properties for optoelectronics, a fundamental concept for LFCs is specifically described. Thereafter, research progress on low dimensional material based photosensitive inverters is addressed according to the types of devices. Furthermore, as one of practical method for the improvement of photodetector performance, molecular doping technology is presented. Lastly, complete system of LFCs and its digitization for demonstration of production level, and potential application in the respective four aspects, (i) medical SpO2 detection, (ii) biological fluidic system, (iii) auto-lighting in agriculture, and (iv) optical feedback and sensing systems, are presented as systematic way to address the envisioned practical applications for the future displays including virtual reality and augmented reality, and others. As a remark, LFCs based on low dimensional semiconductors are expected to be one of core components in trillion’s sensor area.


menu
Abstract
Full text
Outline
About this article

Progress in light-to-frequency conversion circuits based on low dimensional semiconductors

Show Author's information Seung Gi SeoSeung Yeob KimJinheon JeongSung Hun Jin( )
Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon 22012, Republic of Korea

Abstract

As the scaling down of Si devices in the range less than few nm has been expedited up to a physical limit of Si, low dimensional materials have been regarded as one of next generation semiconductors. Among a variety of applications, studies on photodetectors have been actively investigated with their novel optical properties as well as astonishing electrical properties. However, most of research has focused on single device-type photodetector (i.e., photo-diode or photo-transistor). Contrary to common photodetector, light-to-frequency circuits (LFCs) are based on frequency reading with photosensitive ring oscillators, which has better noise immunity and reduced system complexity, thus, can be utilized to novel application even in internet of things (IoT) and bio & medical fields. In this review, low dimensional materials based circuit level photodetectors, which are core elements as the form of either inverters or ring oscillators for demonstration of LFCs, are introduced. Along with the introduction of low dimensional materials and their optical properties for optoelectronics, a fundamental concept for LFCs is specifically described. Thereafter, research progress on low dimensional material based photosensitive inverters is addressed according to the types of devices. Furthermore, as one of practical method for the improvement of photodetector performance, molecular doping technology is presented. Lastly, complete system of LFCs and its digitization for demonstration of production level, and potential application in the respective four aspects, (i) medical SpO2 detection, (ii) biological fluidic system, (iii) auto-lighting in agriculture, and (iv) optical feedback and sensing systems, are presented as systematic way to address the envisioned practical applications for the future displays including virtual reality and augmented reality, and others. As a remark, LFCs based on low dimensional semiconductors are expected to be one of core components in trillion’s sensor area.

Keywords: carbon nanotube, photodetector, transition metal dichalcogenide, light-to-frequency conversion circuit

References(249)

[1]
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
[2]
Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102-1120.
[3]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[4]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[5]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[6]
Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516-4522.
[7]
Huang, Y. Y.; Zhu, L. P.; Zhao, Q. Y.; Guo, Y. H.; Ren, Z. Y.; Bai, J. T.; Xu, X. L. Surface optical rectification from Layered MoS2 crystal by THz time-domain surface emission spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 4956-4965.
[8]
Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.
[9]
Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49-52.
[10]
Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758-762.
[11]
DeHeer, W. A.; Bacsa, W. S.; Châtelain, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D. Aligned carbon nanotube films: Production and optical and electronic properties. Science 1995, 268, 845-847.
[12]
Wong, H. S. P.; Mitra, S.; Akinwande, D.; Beasley, C.; Chai, Y.; Chen, H. Y.; Chen, X. Y.; Close, G.; Deng, J.; Hazeghi, A. et al. Carbon nanotube electronics—Materials, devices, circuits, design, modeling, and performance projection. In Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011, pp 23.1.1-23.1.4.
[13]
Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
[14]
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
[15]
Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498-3502.
[16]
Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.
[17]
Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S. J. Carbon nanotube electronics. Proc. IEEE 2003, 91, 1772-1784.
[18]
Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127, 5990-5995.
[19]
Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68-72.
[20]
Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922-1925.
[21]
Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.
[22]
Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.
[23]
Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.
[24]
Basov, D. N.; Averitt, R. D.; Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 2017, 16, 1077-1088.
[25]
Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48-55.
[26]
Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824-832.
[27]
Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182-194.
[28]
Wang, F. J.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305.
[29]
Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238-245.
[30]
Yang, L. J.; Wang, S.; Zeng, Q. S.; Zhang, Z. Y.; Pei, T.; Li, Y.; Peng, L. M. Efficient photovoltage multiplication in carbon nanotubes. Nat. Photonics 2011, 5, 672-676.
[31]
Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691-3718.
[32]
Freitag, M.; Low, T.; Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 2013, 13, 1644-1648.
[33]
Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865-871.
[34]
Sensale-Rodriguez, B.; Yan, R. S.; Kelly, M. M.; Fang, T.; Tahy, K.; Hwang, W. S.; Jena, D.; Liu, L.; Xing, H. G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3, 780.
[35]
Mak, K. F.; Ju, L.; Wang, F.; Heinz, T. F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341-1349.
[36]
Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.
[37]
Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086-1101.
[38]
Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.
[39]
Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070-8077.
[40]
Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[41]
Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.
[42]
Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575-6581.
[43]
Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
[44]
Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978-8983.
[45]
Hong, T.; Chamlagain, B.; Wang, T. J.; Chuang, H. J.; Zhou, Z. X.; Xu, Y. Q. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. Nanoscale 2015, 7, 18537-18541.
[46]
Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.
[47]
Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
[48]
Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.
[49]
Rivera, M.; Velázquez, R.; Aldalbahi, A.; Zhou, A. F.; Feng, P. High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector. Sci. Rep. 2017, 7, 42973.
[50]
Sajjad, M.; Jadwisienczak, W. M.; Feng, P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector. Nanoscale 2014, 6, 4577-4582.
[51]
Aldalbahi, A.; Feng, P. Development of 2-D boron nitride nanosheets UV photoconductive detectors. IEEE Trans. Electron Devices 2015, 62, 1885-1890.
[52]
Swan, M. Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217-253.
[53]
Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 2013, 29, 1645-1660.
[54]
Alam, M.; Tehranipoor, M. M.; Guin, U. TSensors vision, infrastructure and security challenges in trillion sensor era: Current trends and future directions. J. Hardw. Syst. Secur. 2017, 1, 311-327.
[55]
Liu, J. J.; Faulkner, G.; Choubey, B.; Collins, S.; O’Brien, D. C. A tunable passband logarithmic photodetector for IoT smart dusts. IEEE Sens. J. 2018, 18, 5321-5328.
[56]
Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, eaaw7846.
[57]
Cai, S.; Xu, X. J.; Yang, W.; Chen, J. X.; Fang, X. S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138.
[58]
Qiu, M. J.; Sun, P.; Liu, Y. J.; Huang, Q. T.; Zhao, C. X.; Li, Z. H.; Mai, W. J. Visualized UV photodetectors based on Prussian blue/ TiO2 for smart irradiation monitoring application. Adv. Mater. Technol. 2018, 3, 1700288.
[59]
Du, Y.; Guo, S. J. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 2016, 8, 2532-2543.
[60]
Li, Y.; Luo, X. S.; Liang, G.; Lo, G. Q. Demonstration of Ge/Si avalanche photodetector arrays for lidar application. In Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019, p Tu3E.3.
[61]
Nadeev, A. I.; Penner, I. E.; Shevtsov, E. S. Photodetector module for recording lidar signals in the near-infrared region. Atmos. Ocean. Opt. 2020, 33, 400-405.
[62]
Yang, W.; Chen, J. X.; Zhang, Y.; Zhang, Y. J.; He, J. H.; Fang, X. S. Silicon-compatible photodetectors: Trends to monolithically integrate photosensors with chip technology. Adv. Funct. Mater. 2019, 29, 1808182.
[63]
Chen, H. Y.; Liu, K. W.; Hu, L. F.; Al-Ghamdi, A. A.; Fang, X. S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493-502.
[64]
Tang, F.; Shu, Z.; Ye, K.; Zhou, X. C.; Hu, S. D.; Lin, Z.; Bermak, A. A linear 126-dB dynamic range light-to-frequency converter with dark current suppression upto 125 °C for blood oxygen concentration detection. IEEE Trans. Electron Devices 2016, 63, 3983-3988.
[65]
Fakharuddin, A.; Shabbir, U.; Qiu, W. M.; Iqbal, T.; Sultan, M.; Heremans, P.; Schmidt-Mende, L. Inorganic and layered perovskites for optoelectronic devices. Adv. Mater. 2019, 31, 1807095.
[66]
Feng, J. G.; Yan, X. X.; Liu, Y. Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.
[67]
Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.
[68]
Zhou, H.; Zeng, J. P.; Song, Z. N.; Grice, C. R.; Chen, C.; Song, Z. H.; Zhao, D. W.; Wang, H.; Yan, Y. F. Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity. J. Phys. Chem. Lett. 2018, 9, 2043-2048.
[69]
Qiao, S.; Cong, R. D.; Liu, J. H.; Liang, B. L.; Fu, G. S; Yu, W.; Ren, K. L.; Wang, S. F.; Pan, C. F. A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. J. Mater. Chem. C 2018, 6, 3233-3239.
[70]
Barrales-Guadarrama, R.; Mocholí-Salcedo, A.; Vázquez-Cerón, E. R.; Rodríguez-Rodríguez, M. E.; Barrales-Guadarrama, V. R. A technique for adapting a quasi-digital photodetector to a frequency-to-digital converter. In Proceedings of 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, 2012, pp 343-348.
[71]
Ehsan, A. A.; Shaari, S.; Rahman, M. K. A.; Khan, K. M. Optical transceiver design for POF portable optical access-card system using light-to-frequency converter. In Proceedings of 2008 IEEE International Conference on Semiconductor Electronics, Johor Bahru, Malaysia, 2008, pp 345-349.
[72]
AMS. Light-to-frequency—programmable light-to-frequency converters—TSL230RD. https://www.mouser.com/ds/2/588/TSL230RDTSL230ARDTSL230BRD-P-519226.pdf (accessed Sep 14, 2016).
[73]
TSL230RD, TSL230ARD, TSL230BRS programable light-to-frequency converters. http://ams.com/eng/Products/Light-Sensors/Light-to-Frequency (accessed May 17, 2016).
[74]
AMS. TCS3200, TCS3210, Programmable color light-to-frequency converter. http://ams.com/eng/Products/Light-Sensors/Color-Sensors/TCS3200 (accessed Jul 10, 2015).
[75]
Tang, F.; Li, Z. P.; Yang, T. B.; Zhang, L.; Zhou, X. C.; Hu, S. D.; Lin, Z.; Li, P.; Wang, B.; Bermak, A. A noise-reduced light-to-frequency converter for Sub-0.1% perfusion index blood SpO2 sensing. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 931-941.
[76]
Chaves, A.; Azadani, J. G.; Alsalman, H.; da Costa, D. R.; Frisenda, R.; Chaves, A. J.; Song, S. H.; Kim, Y. D.; He, D. W.; Zhou, J. D. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 2020, 4, 29.
[77]
Xie, C. Y.; Jiang, S. L.; Gao, Y. L.; Hong, M.; Pan, S. Y.; Zhao, J. J.; Zhang, Y. F. Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide. Small 2020, 16, 2000754.
[78]
Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592-4597.
[79]
Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Sci. Rep. 2016, 6, 39619.
[80]
Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067-1071.
[81]
Jeong, J.; Seo, S. G.; Kim, S. Y.; Jin, S. H. Photosensitive complementary inverters composed of n-channel ReS2 and p-channel single-walled carbon nanotube field-effect transistors. Phys. Status Solidi - Rapid Res. Lett. 2020, 14, 2000420.
[82]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[83]
Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 1982, 86, 463-467.
[84]
Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.
[85]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[86]
Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988-5994.
[87]
Mudd, G. W.; Svatek, S. A.; Ren, T. H.; Patanè, A.; Makarovsky, O.; Eaves, L.; Beton, P. H.; Kovalyuk, Z. D.; Lashkarev, G. V.; Kudrynskyi, Z. R. et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 2013, 25, 5714-5718.
[88]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[89]
Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.
[90]
Iqbal, M. W.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review. Superlatt. Microst. 2020, 137, 106350.
[91]
Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.
[92]
Choi, Y.; Kang, J. M.; Jariwala, D.; Kang, M. S.; Marks, T. J.; Hersam, M. C.; Cho, J. H. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures. Adv. Mater. 2016, 28, 3742-3748.
[93]
Ryu, J. H.; Baek, G. W.; Yu, S. J.; Seo, S. G.; Jin, S. H. Photosensitive full-swing multi-layer MoS2 inverters with light shielding layers. IEEE Electron Device Lett. 2017, 38, 67-70.
[94]
Seo, S. G.; Han, S. W.; Cha, H. Y.; Yang, S.; Jin, S. H. Light-shield layers free photosensitive inverters comprising GaN-drivers and multi-layered MoS2-loads. IEEE Electron Device Lett. 2019, 40, 107-110.
[95]
Seo, S. G.; Jin, S. H. Photosensitive complementary inverters based on n-channel MoS2 and p-channel MoTe2 transistors for light-to-frequency conversion circuits. Phys. Status Solidi - Rapid Res. Lett. 2019, 13, 1900317.
[96]
Martínez Ciro, R. A.; López Giraldo, F. E.; Betancur Perez, A. F.; Luna Rivera, M. Characterization of light-to-frequency converter for visible light communication systems. Electronics 2018, 7, 165.
[97]
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[98]
Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180-192.
[99]
He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989-1011.
[100]
Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2002, 41, 1853-1859.
[101]
Iijima, S. Carbon nanotubes: Past, present, and future. Phys. B Condens. Matter 2002, 323, 1-5.
[102]
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
[103]
Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096-1104.
[104]
Dai, H. J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035-1044.
[105]
Zhang, W. D.; Xu, B.; Jiang, L. C. Functional hybrid materials based on carbon nanotubes and metal oxides. J. Mater. Chem. 2010, 20, 6383-6391.
[106]
Katz, E.; Willner, I. Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics. ChemPhysChem 2004, 5, 1084-1104.
[107]
Sgobba, V.; Guldi, D. M. Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 2009, 38, 165-184.
[108]
Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60-68.
[109]
Tuncel, D. Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale 2011, 3, 3545-3554.
[110]
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85-120.
[111]
Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595-602.
[112]
Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 2005, 87, 073101.
[113]
Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413-416.
[114]
St-Antoine, B. C.; Ménard, D.; Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments. Nano Res. 2012, 5, 73-81.
[115]
Barkelid, M.; Zwiller, V. Photocurrent generation in semiconducting and metallic carbon nanotubes. Nat. Photonics 2014, 8, 47-51.
[116]
Arnold, M. S.; Blackburn, J. L.; Crochet, J. J.; Doorn, S. K.; Duque, J. G.; Mohite, A.; Telg, H. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Phys. Chem. Chem. Phys. 2013, 15, 14896-14918.
[117]
Pradhan, B.; Setyowati, K.; Liu, H. Y.; Waldeck, D. H.; Chen, J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett. 2008, 8, 1142-1146.
[118]
Pradhan, B.; Kohlmeyer, R. R.; Setyowati, K.; Owen, H. A.; Chen, J. Advanced carbon nanotube/polymer composite infrared sensors. Carbon 2009, 47, 1686-1692.
[119]
Lu, R. T.; Christianson, C.; Kirkeminde, A.; Ren, S. Q.; Wu, J. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: Toward high detectivity carbon nanotube infrared detectors. Nano Lett. 2012, 12, 6244-6249.
[120]
Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantar-Zadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251-6259.
[121]
Long, R.; Prezhdo, O. V. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction. Nano Lett. 2014, 14, 3335-3341.
[122]
Xie, Y.; Gong, M. G.; Shastry, T. A.; Lohrman, J.; Hersam, M. C.; Ren, S. Q. Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. Adv. Mater. 2013, 25, 3433-3437.
[123]
Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.
[124]
St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609-613.
[125]
Wickramaratne, D.; Zahid, F.; Lake, R. K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 2014, 140, 124710.
[126]
Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
[127]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
[128]
Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201-204.
[129]
Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.
[130]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611-622.
[131]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[132]
Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.
[133]
Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660-5665.
[134]
Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.
[135]
Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
[136]
Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.
[137]
Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.
[138]
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.
[139]
Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.
[140]
Perea-Lõpez, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; Lõpez-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511-5517.
[141]
Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 1993, 81, 1687-1706.
[142]
Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267-2336.
[143]
Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187-210.
[144]
Rogalski, A. New material systems for third generation infrared photodetectors. Opto-Electronics Rev. 2008, 16, 458-482.
[145]
Keller, L. D.; Herter, T. L.; Stacey, G. J.; Gull, G. E.; Pirger, B.; Schoenwald, J.; Bowman, H.; Nikola, T. FORCAST: A facility 5- to 40-μm camera for SOFIA. In Proceedings of SPIE 4014, Airborne Telescope Systems, Munich, Germany, 2000, pp 86-97.
[146]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.
[147]
Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63-84.
[148]
Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.
[149]
Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; Van Der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772-775.
[150]
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.
[151]
Liu, B. L.; Köpf, M.; Abbas, A. N.; Wang, X. M.; Guo, Q. S.; Jia, Y. C.; Xia, F. N.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F. et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423-4429.
[152]
Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176-1181.
[153]
Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V; Georgiou, T.; Morozov, S. V et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
[154]
Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614-617.
[155]
Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
[156]
Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 Heterostructures. Sci. Rep. 2015, 4, 3826.
[157]
Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254-2259.
[158]
Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H. et al. High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat. Commun. 2014, 5, 3249.
[159]
Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724-11731.
[160]
Tan, W. C.; Huang, L.; Ng, R. J.; Wang, L.; Hasan, D. M. N.; Duffin, T. J.; Kumar, K. S.; Nijhuis, C. A.; Lee, C.; Ang, K. W. A black phosphorus carbide infrared phototransistor. Adv. Mater. 2018, 30, 1705039.
[161]
Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. Q.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228-236.
[162]
Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253-7263.
[163]
Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281-8289.
[164]
Sie, E. J.; McIver, J. W.; Lee, Y. H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290-294.
[165]
Schall, D.; Otto, M.; Neumaier, D.; Kurz, H. Integrated ring oscillators based on high-performance graphene inverters. Sci. Rep. 2013, 3, 2592.
[166]
Zheng, Y.; Hu, Z. H.; Han, C.; Guo, R.; Xiang, D.; Lei, B.; Wang, Y. N.; He, J.; Lai, M.; Chen, W. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 2019, 12, 531-536.
[167]
Song, M. K.; Namgung, S. D.; Sung, T.; Cho, A. J.; Lee, J.; Ju, M. S.; Nam, K. T.; Lee, Y. S.; Kwon, J. Y. Physically transient field-effect transistors based on black phosphorus. ACS Appl. Mater. Interfaces 2018, 10, 42630-42636.
[168]
Dileep, K.; Sahu, R.; Sarkar, S.; Peter, S. C.; Datta, R. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy. J. Appl. Phys. 2016, 119, 114309.
[169]
Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700.
[170]
Jeong, J.; Seo, S. G.; Yu, S. M.; Kang, Y. H.; Song, J.; Jin, S. H. Flexible light-to-frequency conversion circuits built with Si-based frequency-to-digital converters via complementary photosensitive ring oscillators with p-type SWNT and n-type a-IGZO thin film transistors. Small, in press, .
[171]
Jin, S. H.; Park, M. S.; Shur, M. S. Photosensitive inverter and ring oscillator with pseudodepletion mode load for LCD applications. IEEE Electron Device Lett. 2009, 30, 943-945.
[172]
Lee, K. C.; Moon, S. H.; Berkeley, B.; Kim, S. S. Optical feedback system with integrated color sensor on LCD. Sens. Actuators A Phys. 2006, 130-131, 214-219.
[173]
Seo, S. G.; Ryu, J. H.; Kim, S. Y.; Jeong, J.; Jin, S. H. Enhancement of photodetective properties on multilayered MoS2 thin film transistors via self-assembled poly-L-lysine treatment and their potential application in optical sensors. Nanomaterials 2021, 11, 1586.
[174]
Fathipour, S.; Ma, N.; Hwang, W. S.; Protasenko, V.; Vishwanath, S.; Xing, H. G.; Xu, H.; Jena, D.; Appenzeller, J.; Seabaugh, A. Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 2014, 105, 192101.
[175]
Lai, J. W.; Liu, X.; Ma, J. C.; Wang, Q. S.; Zhang, K. N.; Ren, X.; Liu, Y. N.; Gu, Q. Q.; Zhuo, X.; Lu, W. et al. Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 2018, 30, 1707152.
[176]
Kuiri, M.; Chakraborty, B.; Paul, A.; Das, S.; Sood, A. K.; Das, A. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures. Appl. Phys. Lett. 2016, 108, 063506.
[177]
Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.
[178]
Yu, Z. G.; Cai, Y. Q.; Zhang, Y. W. Robust direct bandgap characteristics of one-and two-dimensional ReS2. Sci. Rep. 2015, 5, 13783.
[179]
Rahman, M.; Davey, K.; Qiao, S. Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129.
[180]
Seo, S. G.; Jeong, J.; Kim, S. Y.; Kumar, A.; Jin, S. H. Multiple and reversible counter doping enabled threshold voltage transistors via poly-L-lysine and ODTS charge enhancers. Nano Res., in press, .
[181]
Pherson, M. R. M. The adjustment of MOS transistor threshold voltage by ion implantation. Appl. Phys. Lett. 1971, 18, 502-504.
[182]
Park, Y. J.; Katiyar, A. K.; Hoang, A. T.; Ahn, J. H. Controllable p- and n-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 2019, 15, 1901772.
[183]
Cho, Y.; Park, J. H.; Kim, M.; Jeong, Y.; Yu, S.; Lim, J. Y.; Yi, Y.; Im, S. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors. Nano Lett. 2019, 19, 2456-2463.
[184]
Roh, J.; Ryu, J. H.; Baek, G. W.; Jung, H.; Seo, S. G.; An, K.; Jeong, B. G.; Lee, D. C.; Hong, B. H.; Bae, W. K. et al. Threshold voltage control of multilayered MoS2 field-effect transistors via octadecyltrichlorosilane and their applications to active matrixed quantum dot displays driven by enhancement-mode logic gates. Small 2019, 15, 1803852.
[185]
Park, J.; Kang, D. H.; Kim, J. K.; Park, J. H.; Yu, H. Y. Efficient threshold voltage adjustment technique by dielectric capping effect on MoS2 field-effect transistor. IEEE Electron Device Lett. 2017, 38, 1172-1175.
[186]
Li, X. K.; Sun, R. X.; Guo, H. W.; Su, B. W.; Li, D. K.; Yan, X. Q.; Liu, Z. B.; Tian, J. G. Controllable doping of transition-metal dichalcogenides by organic solvents. Adv. Electron. Mater. 2020, 6, 1901230.
[187]
Kawanago, T.; Oda, S. Control of threshold voltage by gate metal electrode in molybdenum disulfide field-effect transistors. Appl. Phys. Lett. 2017, 110, 133507.
[188]
Jiang, J.; Dhar, S. Tuning the threshold voltage from depletion to enhancement mode in a multilayer MoS2 transistor via oxygen adsorption and desorption. Phys. Chem. Chem. Phys. 2016, 18, 685-689.
[189]
Leong, W. S.; Li, Y. D.; Luo, X.; Nai, C. T.; Quek, S. Y.; Thong, J. T. L. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment. Nanoscale 2015, 7, 10823-10831.
[190]
Nakaharai, S.; Yamamoto, M.; Ueno, K.; Lin, Y. F.; Li, S. L.; Tsukagoshi, K. Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 2015, 9, 5976-5983.
[191]
Najmaei, S.; Zou, X. L.; Er, D. Q.; Li, J. W.; Jin, Z. H.; Gao, W. L.; Zhang, Q.; Park, S.; Ge, L. H.; Lei, S. D. et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 2014, 14, 1354-1361.
[192]
Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795-7804.
[193]
Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323-5329.
[194]
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[195]
Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.
[196]
Jo, S. H.; Park, H. Y.; Kang, D. H.; Shim, J.; Jeon, J.; Choi, S.; Kim, M.; Park, Y.; Lee, J.; Song, Y. J. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl)triethoxysilane and triphenylphosphine treatment. Adv. Mater. 2016, 28, 6711-6718.
[197]
Choi, M.; Park, Y. J.; Sharma, B. K.; Bae, S. R.; Kim, S. Y.; Ahn, J. H. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci. Adv. 2018, 4, eaas8721.
[198]
Hsieh, H. H.; Tsai, T. T.; Chang, C. Y.; Wang, H. H.; Huang, J. Y.; Hsu, S. F.; Wu, Y. C.; Tsai, T. C.; Chuang, C. S.; Chang, L. H. et al. 11.2: A 2.4in. AMOLED with IGZO TFTs and inverted OLED devices. SID Symp. Dig. Tech. Pap. 2010, 41, 140-143.
[199]
Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs. Proc. Natl. Acad. Sci. USA 2017, 114, 233-238.
[200]
Yao, J. K.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C.; Shieh, H. P. D.; Liu, P. T.; Huang, Y. P. Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE Trans. Electron Devices 2011, 58, 1121-1126.
[201]
Jang, J. T.; Park, J.; Ahn, B. D.; Kim, D. M.; Choi, S. J.; Kim, H. S.; Kim, D. H. Study on the photoresponse of amorphous In-Ga-Zn-O and Zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation. ACS Appl. Mater. Interfaces 2015, 7, 15570-15577.
[202]
Janotti, A.; van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102.
[203]
Nathan, A.; Lee, S.; Jeon, S.; Song, I.; Chung, U. I. Transparent oxide semiconductors for advanced display applications. Inf. Disp. 2013, 29, 6-11.
[204]
Minas, G.; Ribeiro, J. C.; Wolffenbuttel, R. F.; Correia, J. H. On-chip integrated CMOS optical detection microsystem for spectrophotometric analyses in biological microfluidic systems. In Proceedings of IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia, 2005, pp 1133-1138.
[205]
Kuo, W. C.; Chiang, C. T.; Huang, Y. C. An automatic light monitoring system with light-to-frequency converter for flower planting. In Proceedings of 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, 2008, pp 1146-1149.
[206]
Sinchai, S.; Kainan, P.; Wardkein, P.; Koseeyaporn, J. A photoplethysmographic signal isolated from an additive motion artifact by frequency translation. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 904-917.
[207]
Gubbi, S. V.; Amrutur, B. Adaptive pulse width control and sampling for low power pulse oximetry. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 272-283.
[208]
Patterson, J. A. C.; Yang, G. Z. Ratiometric artifact reduction in low power reflective photoplethysmography. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 330-338.
[209]
Correia, R. G.; Pimenta, S.; Minas, G. CMOS integrated photodetectors and light-to-frequency converters for spectrophotometric measurements. IEEE Sens. J. 2017, 17, 3438-3445.
[210]
Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35-39.
[211]
Marulanda, J. M.; Srivastava, A. Carrier density and effective mass calculations in carbon nanotubes. Phys. Status Solidi B 2008, 245, 2558-2562.
[212]
Zhou, X. J.; Zifer, T.; Wong, B. M.; Krafcik, K. L.; Léonard, F.; Vance, A. L. Color detection using chromophore-nanotube hybrid devices. Nano Lett. 2009, 9, 1028-1033.
[213]
Park, S.; Kim, S. J.; Nam, J. H.; Pitner, G.; Lee, T. H.; Ayzner, A. L.; Wang, H. L.; Fong, S. W.; Vosgueritchian, M.; Park, Y. J. et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv. Mater. 2015, 27, 759-765.
[214]
Schuler, S.; Schall, D.; Neumaier, D.; Dobusch, L.; Bethge, O.; Schwarz, B.; Krall, M.; Mueller, T. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett. 2016, 16, 7107-7112.
[215]
Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[216]
Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179-184.
[217]
Boyd, D. A.; Lin, W. H.; Hsu, C. C.; Teague, M. L.; Chen, C. C.; Lo, Y. Y.; Chan, W. Y.; Su, W. B.; Cheng, T. C.; Chang, C. S. et al. Single-step deposition of high-mobility graphene at reduced temperatures. Nat. Commun. 2015, 6, 6620.
[218]
Schwierz, F. Performance of graphene and beyond graphene 2D semiconductor devices. ECS Trans. 2015, 69, 231-240.
[219]
Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440-7444.
[220]
Lee, Y.; Yang, J.; Lee, D.; Kim, Y. H.; Park, J. H.; Kim, H.; Cho, J. H. Trap-induced photoresponse of solution-synthesized MoS2. Nanoscale 2016, 8, 9193-9200.
[221]
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[222]
Jin, Z. H.; Li, X. D.; Mullen, J. T.; Kim, K. W. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 2014, 90, 045422.
[223]
Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.
[224]
Pradhan, N. R.; Rhodes, D.; Memaran, S.; Poumirol, J. M.; Smirnov, D.; Talapatra, S.; Feng, S.; Perea-Lopez, N.; Elias, A. L.; Terrones, M. et al. Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors. Sci. Rep. 2015, 5, 8979.
[225]
Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-46.
[226]
Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.
[227]
Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.
[228]
Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118-151.
[229]
Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.
[230]
Liu, X.; Hu, J.; Yue, C. L.; Della Fera, N.; Ling, Y.; Mao, Z. Q.; Wei, J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8, 10396-10402.
[231]
Gong, F.; Luo, W. J.; Wang, J. L.; Wang, P.; Fang, H. H.; Zheng, D. S.; Guo, N.; Wang, J. L.; Luo, M.; Ho, J. C. et al. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater. 2016, 26, 6084-6090.
[232]
Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 2015, 7, 14974-14981.
[233]
Zeng, L. H.; Tao, L. L.; Tang, C. Y.; Zhou, B.; Long, H.; Chai, Y.; Lau, S. P.; Tsang, Y. H. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep. 2016, 6, 20343.
[234]
Xu, X.; Guo, Y. H.; Zhao, Q. Y.; Si, K. Y.; Zhou, Y. X.; Ma, J. Y.; Bai, J. T.; Xu, X. L. Green and efficient exfoliation of ReS2 and its photoelectric response based on electrophoretic deposited photoelectrodes. Mater. Des. 2018, 159, 11-19.
[235]
Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956-18962.
[236]
Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169-1177.
[237]
Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985-6992.
[238]
Grant, A. J.; Griffiths, T. M.; Pitt, G. D.; Yoffe, A. D. The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals. J. Phys. C Solid State Phys. 1975, 8, L17-L23.
[239]
Huang, H.; Wang, X. D.; Wang, P.; Wu, G. J.; Chen, Y.; Meng, C. M.; Liao, L.; Wang, J. L.; Hu, W. D.; Shen, H. et al. Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Adv. 2016, 6, 87416-87421.
[240]
Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.
[241]
Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201.
[242]
Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392-5398.
[243]
Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[244]
Yang, L. M.; Qiu, G.; Si, M. W.; Charnas, A. R.; Milligan, C. A.; Zemlyanov, D. Y.; Zhou, H.; Du, Y. C.; Lin, Y. M.; Tsai, W. et al. Few-layer black phosporous PMOSFETs with BN/AI2O3 bilayer gate dielectric: Achieving Ion = 850 μA/μm, gm = 340 μS/μm, and Rc = 0.58 kΩ·μm. In Proceedings of 2016 IEEE International Electron Devices Meeting, San Francisco, USA, 2016, pp 127-130.
[245]
Wang, H.; Wang, X. M.; Xia, F. N.; Wang, L. H.; Jiang, H.; Xia, Q. F.; Chin, M. L.; Dubey, M.; Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett. 2014, 14, 6424-6429.
[246]
Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481-3485.
[247]
Ludwig, G. W.; Watters, R. L. Drift and conductivity mobility in silicon. Phys. Rev. 1956, 101, 1699-1701.
[248]
HAMAMATSU. Si photodiode, S16008-33. Available online: https://www.hamamatsu.com/resources/pdf/ssd/s16008-33_kspd1091e.pdf (accessed Mar, 2021).
[249]
HAMAMATSU. Si photodiode, S12698, Available online: https://www.hamamatsu.com/resources/pdf/ssd/s12698_series_kspd1084e.pdf (accessed Jan, 2020).
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2021
Revised: 28 April 2021
Accepted: 12 May 2021
Published: 26 June 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This research was supported by the Incheon National University Research Grant (2018-0100) in 2018, Incheon, Republic of Korea.

Return