Journal Home > Volume 15 , Issue 2

Devising an electrocatalyst with brilliant efficiency and satisfactory durability for hydrogen production is of considerable demand, especially for large-scale application. Herein, we adopt a multi-step consequential induced strategy to construct a bifunctional electrocatalyst for the overall water splitting. Graphene oxide (GO) was used as a carbon matrix and in situ oxygen source, which was supported by the octahedral PtNi alloy to form the PtxNiy–GO precursor. When calcinating in Ar atmosphere, the oxygen in GO induced the surface segregation of Ni from the PtNi octahedron to form a core–shell structure of Ptx@Niy. Then, the surface- enriched Ni continuously induced the reformation of C in reduced graphene oxide (rGO) to enhance the degree of graphitization. This multi-step induction formed a nanocatalyst Ptx@Niy–rGO which has very high catalytic efficiency and stability. By optimizing the feeding ratio of PtNi (Pt: Ni = 1:2), the electrolytic overall water splitting at 10 mA·cm−2 can be driven by an electrolytic voltage of as low as 1.485 V, and hydrogen evolution reaction (HER) only needs an overpotential of 37 mV in 1.0 M KOH aqueous solution. Additionally, the catalyst exhibited consistent existence form in both HER and oxygen evolution reaction (OER), which was verified by switching the anode and cathode of the cell in the electrolysis of water. This work provides a new idea for the synthesis and evaluation of the bifunctional catalysts for water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A multi-step induced strategy to fabricate core–shell Pt–Ni alloy as symmetric electrocatalysts for overall water splitting

Show Author's information Wenjuan Xu1Jinfa Chang2Yinggang Cheng1Hongqi Liu1Jifan Li1Yongjian Ai3Zenan Hu1Xinyue Zhang1Yiming Wang1Qionglin Liang3Yang Yang2( )Hongbin Sun1( )
Department of Chemistry,Northeastern University,Shenyang,110819,China;
NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University,Beijing,100084,China;

Abstract

Devising an electrocatalyst with brilliant efficiency and satisfactory durability for hydrogen production is of considerable demand, especially for large-scale application. Herein, we adopt a multi-step consequential induced strategy to construct a bifunctional electrocatalyst for the overall water splitting. Graphene oxide (GO) was used as a carbon matrix and in situ oxygen source, which was supported by the octahedral PtNi alloy to form the PtxNiy–GO precursor. When calcinating in Ar atmosphere, the oxygen in GO induced the surface segregation of Ni from the PtNi octahedron to form a core–shell structure of Ptx@Niy. Then, the surface- enriched Ni continuously induced the reformation of C in reduced graphene oxide (rGO) to enhance the degree of graphitization. This multi-step induction formed a nanocatalyst Ptx@Niy–rGO which has very high catalytic efficiency and stability. By optimizing the feeding ratio of PtNi (Pt: Ni = 1:2), the electrolytic overall water splitting at 10 mA·cm−2 can be driven by an electrolytic voltage of as low as 1.485 V, and hydrogen evolution reaction (HER) only needs an overpotential of 37 mV in 1.0 M KOH aqueous solution. Additionally, the catalyst exhibited consistent existence form in both HER and oxygen evolution reaction (OER), which was verified by switching the anode and cathode of the cell in the electrolysis of water. This work provides a new idea for the synthesis and evaluation of the bifunctional catalysts for water splitting.

Keywords: graphene oxide, hydrogen evolution reaction, continuous induction, core–shell structured Pt@Ni, alkaline water splitting

References(52)

1

Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate mof as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

2

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

3

Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246–254.

4

Liang, J.; Wang, C. X.; Zhao, P. Y.; Wang, Y. R.; Ma, L. B.; Zhu, G. Y.; Hu, Y.; Lu, Z. P.; Xu, Z. R.; Ma, Y. et al. Interface engineering of anchored ultrathin TiO2/MoS2 heterolayers for highly-efficient electrochemical hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 6084–6089.

5

Zhang, P.; Lu, X. F.; Nai, J. W.; Zang, S. Q.; Lou, X. W. Construction of hierarchical Co-Fe oxyphosphide microtubes for electrocatalytic overall water splitting. Adv. Sci. 2019, 6, 1900576.

6

Ledendecker, M.; Clavel, G.; Antonietti, M.; Shalom, M. Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction. Adv. Funct. Mater. 2015, 25, 393–399.

7

Chen, Y.; Rao, Y.; Wang, R. Z.; Yu, Y. N.; Li, Q. L.; Bao, S. J.; Xu, M. W.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407–2412.

8

Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.

9

Chi, J. Q.; Chai, Y. M.; Shang, X.; Dong, B.; Liu, C. G.; Zhang, W. J.; Jin, Z. Heterointerface engineering of trilayer-shelled ultrathin MoS2/MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. J. Mater. Chem. A 2018, 6, 24783–24792.

10

Luo, F.; Guo, L.; Xie, Y. H.; Xu, J. X.; Qu, K. G.; Yang, Z. H. Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Appl. Catal. B: Environ. 2020, 279, 119394.

11

Lee, M. H.; Youn, D. H.; Lee, J. S. Nanostructured molybdenum phosphide/N-doped carbon nanotube-graphene composites as efficient electrocatalysts for hydrogen evolution reaction. Appl. Catal. A: Gen. 2020, 594, 117451.

12

Ruqia, B.; Choi, S. I. Pt and Pt-Ni(OH)2 electrodes for the hydrogen evolution reaction in alkaline electrolytes and their nanoscaled electrocatalysts. ChemSusChem 2018, 11, 2643–2653.

13

Watzele, S.; Fichtner, J.; Garlyyev, B.; Schwämmlein, J. N.; Bandarenka, A. S. On the dominating mechanism of the hydrogen evolution reaction at polycrystalline Pt electrodes in acidic media. ACS Catal. 2018, 8, 9456–9462.

14

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. , Int. Ed. 2014, 53, 14016–14021.

15

Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

16

Li, D.; Chen, X. F.; Lv, Y. Z.; Zhang, G. Y.; Huang, Y.; Liu, W.; Li, Y.; Chen, R. S.; Nuckolls, C.; Ni, H. W. An effective hybrid electrocatalyst for the alkaline HER: Highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide. Appl. Catal. B: Environ. 2020, 269, 118824.

17

Lv, X. S.; Wei, W.; Wang, H.; Huang, B. B.; Dai, Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: A computational study. Appl. Catal. B: Environ. 2019, 255, 117743.

18

Xiao, B. W.; Wang, K.; Xu G. L.; Song, J. H.; Chen, Z. H.; Amine, K.; Reed, D.; Sui, M. L.; Sprenkle, V.; Ren, Y. et al. Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na. Adv. Mater. 2019, 31, 1805889.

19

Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329.

20

Chi, J. Q.; Xie, J. Y.; Zhang, W. W.; Dong, B.; Qin, J. F.; Zhang, X. Y.; Lin, J. H.; Chai, Y. M.; Liu, C. G. N-doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 4047–4056.

21

Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen- evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem. , Int. Ed. 2014, 53, 12120–12124.

22

Tian, H.; Cui, X. Z.; Zeng, L. M.; Su, L.; Song, Y. L.; Shi, J. L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/Wo3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293.

23

Štrbac, S.; Smiljanić, M.; Wakelin, T.; Potočnik, J.; Rakočević, Z. Hydrogen evolution reaction on bimetallic Ir/Pt(poly) electrodes in alkaline solution. Electrochim. Acta 2019, 306, 18–27.

24

Theerthagiri, J.; Cardoso, E. S. F.; Fortunato, G. V.; Casagrande, G. A.; Senthilkumar, B.; Madhavan, J.; Maia, G. Highly electroactive Ni pyrophosphate/Pt catalyst toward hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 4969–4982.

25

Smiljanić, M.; Rakočević, Z.; Štrbac, S. Electrocatalysis of hydrogen evolution reaction on tri-metallic Rh@Pd/Pt(poly) electrode. Int. J. Hydrogen Energy 2018, 43, 2763–2771.

26

Kelly, T. G.; Lee, K. X.; Chen, J. G. Pt-modified molybdenum carbide for the hydrogen evolution reaction: From model surfaces to powder electrocatalysts. J. Power Sources 2014, 271, 76–81.

27

Lu, W. L.; Li, W. D.; Xiang, G. L.; Wang, L. Y. Enhanced electrocatalytic activity of trace Pt in ternary CuCoPt alloy nanoparticles for hydrogen evolution. Inorg. Chem. 2019, 58, 6529–6533.

28

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

29

Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

30

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

31

Alinezhad, A.; Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Roelsgaard, M.; Iversen, B. B.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207.

32

Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Appl. Catal. B: Environ. 2019, 243, 253–261.

33

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

34

Kühl, S.; Gocyla, M.; Heyen, H.; Selve, S.; Heggen, M.; Dunin- Borkowski, R. E.; Strasser, P. Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. J. Mater. Chem. A 2019, 7, 1149–1159.

35

Munoz, M.; Ponce, S.; Zhang, G. R.; Etzold, B. J. M. Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions. Appl. Catal. B: Environ. 2016, 192, 1–7.

36
Li, J. F.; Liu, L.; Ai, Y. J.; Hu, Z. A.; Xie, L. P.; Bao, H. J.; Wu, J. J.; Tian, H. M.; Guo, R. X.; Ren, S. C. et al. Facile and large-scale fabrication of sub-3 nm PtNi nanoparticles supported on porous carbon sheet: A bifunctional material for the hydrogen evolution reaction and hydrogenation. Chem. —Eur. J. 2019, 25, 7191–7200.https://doi.org/10.1002/chem.201900320
DOI
37

Ma, L. B.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Lu, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem. Mater. 2016, 28, 5733–5742.

38

Askari, M. B.; Salarizadeh, P.; Seifi, M.; Rozati, S. M.; Beheshti- Marnani, A.; Saeidfirozeh, H. MoCoFeS hybridized with reduced graphene oxide as a new electrocatalyst for hydrogen evolution reaction. Chem. Phys. Lett. 2018, 711, 32–36.

39

Yoo, M. J.; Park, H. B. Effect of hydrogen peroxide on properties of graphene oxide in hummers method. Carbon 2019, 141, 515–522.

40

Dahmani, C. E.; Cadeville, M. C.; Sanchez, J. M.; Morán-López, J. L. Ni-Pt phase diagram: Experiment and theory. Phys. Rev. Lett. 1985, 55, 1208–1211.

41

Li, S. F.; Li, M. X.; Ni, Y. H. Grass-like Ni/Cu nanosheet arrays grown on copper foam as efficient and non-precious catalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 265, 118392.

42

Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897.

43

Yang, J. T.; Ning, G. Q.; Yu, L.; Wang, Y.; Luan, C. L.; Fan, A. X.; Zhang, X.; Liu, Y. J.; Dong, Y.; Dai, X. P. Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 17790–17796.

44

Yu, K. M.; Ning, G. Q.; Yang, J. T.; Wang, Y.; Zhang, X.; Qin, Y. C.; Luan, C. L.; Yu, L.; Jiang, Y.; Luan, X. B. et al. Restructured PtNi on ultrathin nickel hydroxide for enhanced performance in hydrogen evolution and methanol oxidation. J. Catal. 2019, 375, 267–278.

45

Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal- based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

46

Baghchesara, M. A.; Azimi, H. R.; Shiravizadeh, A. G.; Teridi, M. A. M.; Yousefi, R. Improving the intrinsic properties of rGO sheets by S-doping and the effects of rGO improvements on the photocatalytic performance of Cu3Se2/rGo nanocomposites. Appl. Surf. Sci. 2019, 466, 401–410.

47

Zhang, J. H.; Ai, Y. J.; Wu, J. J.; Zhang, D. L.; Wang, Y.; Feng, Z. M.; Sun, H. B.; Liang, Q. L.; Sun, T.; Yang, Y. Nickel-catalyzed synthesis of 3D edge-curled graphene for high-performance lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 1904645.

48

Hong, X. H.; Yu, W. D.; Chung, D. D. L. Electric permittivity of reduced graphite oxide. Carbon 2017, 111, 182–190.

49

Ren, X.; Wei, C.; Sun, Y. M.; Liu, X. Z.; Meng, F. Q.; Meng, X. X.; Sun, S. N.; Xi, S. B.; Du, Y. H.; Bi, Z. F. et al. Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 2020, 32, 2001292.

50

Wang, B. L.; Zhao, K. N.; Yu, Z.; Sun, C. L.; Wang, Z.; Feng, N. N.; Mai, L. Q.; Wang, Y. G.; Xia, Y. Y. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200–2208.

51

Steimecke, M.; Seiffarth, G.; Schneemann, C.; Oehler, F.; Förster, S.; Bron, M. Higher-valent nickel oxides with improved oxygen evolution activity and stability in alkaline media prepared by high-temperature treatment of Ni(OH)2. ACS Catal. 2020, 10, 3595–3603.

52

Zhou, T. L.; Wang, C. H.; Shi, Y. M.; Liang, Y.; Yu, Y. F.; Zhang, B. Temperature-regulated reversible transformation of spinel-to- oxyhydroxide active species for electrocatalytic water oxidation. J. Mater. Chem. A 2020, 8, 1631–1635.

File
12274_2021_3582_MOESM1_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2021
Revised: 15 April 2021
Accepted: 08 May 2021
Published: 10 September 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21872020), 1226 Engineering Health Major Project (Nos. BWS17J028 and AWS16J018), Fundamental Research Funds for the Central Universities (No. N180705004).

Return