Journal Home > Volume 15 , Issue 2

The state-of-the-art semiconductor industry is built on the successful production of silicon ingot with extreme purity as high as 99.999999999%, or the so-called "eleven nines". The coming high-end applications of graphene in electronics and optoelectronics will inevitably need defect-free pure graphene as well. Due to its two-dimensional (2D) characteristics, graphene restricts all the defects on its surface and has the opportunity to eliminate all kinds of defects, i.e., line defects at grain boundaries and point or dot defects in grains, and produce intrinsically pure graphene. In the past decade, epitaxy growth has been adopted to grow graphene by seamlessly stitching of aligned grains and the line defects at grain boundaries were eliminated finally. However, as for the equally common dot and point defects in graphene grain, there are rare ways to detect or reduce them with high throughput and efficiency. Here, we report a methodology to realize the production of ultrapure graphene grown on copper by eliminating both the dot and point defects in graphene grains. The dot defects, proved to be caused by the silica particles shedding from quartz tube during the high-temperature growth, were excluded by a designed heat-resisting box to prevent the deposition of particles on the copper surface. The point defects were optically visualized by a mild-oxidation-assisted method and further reduced by etching-regrowth process to an ultralow level of less than 1/1, 000 μm2. Our work points out an avenue for the production of intrinsically pure graphene and thus lays the foundation for the large-scale graphene applications at the integrated-circuit level.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Towards intrinsically pure graphene grown on copper

Show Author's information Xiaozhi Xu1,2,§( )Ruixi Qiao3,4,§Zhihua Liang1,2Zhihong Zhang3,4Ran Wang1,2Fankai Zeng1,2Guoliang Cui1,2Xiaowen Zhang1,2Dingxin Zou5Yi Guo3Can Liu3Ying Fu6Xu Zhou1,2Muhong Wu4Zhujun Wang7Yue Zhao5Enke Wang1,2Zhilie Tang1,2Dapeng Yu5Kaihui Liu3,4( )
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 China
Guangdong-Hong Kong Joint Laboratory of Quantum Matter South China Normal University Guangzhou 510006 China
State Key Laboratory for Mesoscopic Physics Frontiers Science Center for Nano-optoelectronics School of Physics Peking University Beijing 100871 China
International Centre for Quantum Materials Collaborative Innovation Centre of Quantum Matter Peking University Beijing 100871 China
Shenzhen Institute for Quantum Science and Engineering, and Department of Physics Southern University of Science and Technology Shenzhen 518055 China
Songshan Lake Materials Laboratory Institute of Physics Chinese Academy of Sciences Guangdong 523808 China
School of Physical Science and Technology ShanghaiTech University Shanghai 200031 China

§ Xiaozhi Xu and Ruixi Qiao contributed equally to this work.

Abstract

The state-of-the-art semiconductor industry is built on the successful production of silicon ingot with extreme purity as high as 99.999999999%, or the so-called "eleven nines". The coming high-end applications of graphene in electronics and optoelectronics will inevitably need defect-free pure graphene as well. Due to its two-dimensional (2D) characteristics, graphene restricts all the defects on its surface and has the opportunity to eliminate all kinds of defects, i.e., line defects at grain boundaries and point or dot defects in grains, and produce intrinsically pure graphene. In the past decade, epitaxy growth has been adopted to grow graphene by seamlessly stitching of aligned grains and the line defects at grain boundaries were eliminated finally. However, as for the equally common dot and point defects in graphene grain, there are rare ways to detect or reduce them with high throughput and efficiency. Here, we report a methodology to realize the production of ultrapure graphene grown on copper by eliminating both the dot and point defects in graphene grains. The dot defects, proved to be caused by the silica particles shedding from quartz tube during the high-temperature growth, were excluded by a designed heat-resisting box to prevent the deposition of particles on the copper surface. The point defects were optically visualized by a mild-oxidation-assisted method and further reduced by etching-regrowth process to an ultralow level of less than 1/1, 000 μm2. Our work points out an avenue for the production of intrinsically pure graphene and thus lays the foundation for the large-scale graphene applications at the integrated-circuit level.

Keywords: copper, pure graphene, point defect, mild-oxidation

References(37)

1

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

2

Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106–110.

3

Madar, R. Materials science: Silicon carbide in contention. Nature 2004, 430, 974–975.

4

Nakamura, D.; Gunjishima, I.; Yamaguchi, S.; Ito, T.; Okamoto, A.; Kondo, H.; Onda, S.; Takatori, K. Ultrahigh-quality silicon carbide single crystals. Nature 2004, 430, 1009–1012.

5

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

6

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

7

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

8

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

9

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

10

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

11

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

12

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

13

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

14

Geng, D. C.; Wu, B.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Jiang, L.; Hu, W. P.; Liu, Y. Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992–7996.

15

Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

16

Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117.

17

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

18

Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

19

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

20

Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

21

Babenko, V.; Murdock, A. T.; Koós, A. A.; Britton, J.; Crossley, A.; Holdway, P.; Moffat, J.; Huang, J.; Alexander-Webber, J. A.; Nicholas, R. J. et al. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum. Nat. Commun. 2015, 6, 7536.

22

Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

23

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 2016, 15, 43–47.

24

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D. C.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial cu foil. Sci. Bull. 2017, 62, 1074–1080.

25

Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 2018, 17, 318–322.

26

Yasunishi, T.; Takabayashi, Y.; Kishimoto, S.; Kitaura, R.; Shinohara, H.; Ohno, Y. Origin of residual particles on transferred graphene grown by CVD. Jpn. J. Appl. Phys. 2016, 55, 080305.

27

Lisi, N.; Dikonimos, T.; Buonocore, F.; Pittori, M.; Mazzaro, R.; Rizzoli, R.; Marras, S.; Capasso, A. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 2017, 7, 9927.

28

Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

29

Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A. W. et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230.

30

Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

31

Kim, D. W.; Kim, Y. H.; Jeong, H. S.; Jung, H. T. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 2012, 7, 29–34.

32

Son, J. H.; Baeck, S. J.; Park, M. H.; Lee, J. B.; Yang, C. W.; Song, J. K.; Zin, W. C.; Ahn, J. H. Detection of graphene domains and defects using liquid crystals. Nat. Commun. 2014, 5, 3484.

33

Ago, H.; Fukamachi, S.; Endo, H.; Solis-Fernández, P.; Yunus, R. M.; Uchida, Y.; Panchal, V.; Kazakova, O.; Tsuji, M. Visualization of grain structure and boundaries of polycrystalline graphene and two-dimensional materials by epitaxial growth of transition metal dichalcogenides. ACS Nano 2016, 10, 3233–3240.

34

Fan, X. G.; Wagner, S.; Schädlich, P.; Speck, F.; Kataria, S.; Haraldsson, T.; Seyller, T.; Lemme, M. C.; Niklaus, F. Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 2018, 4, eaar5170.

35

Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

36

Yazyev, O. V.; Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806–809.

37

Zhang, Y.; Li, Z.; Kim, P.; Zhang, L. Y.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.

File
12274_2021_3575_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 February 2021
Revised: 02 May 2021
Accepted: 05 May 2021
Published: 09 June 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by The Key R & D Program of Guangdong Province (Nos. 2019B010931001, 2020B010189001, and 2018B030327001), Guangdong Provincial Science Fund for Distinguished Young Scholars (No. 2020B1515020043), Science and Technology Program of Guangzhou (No. 2019050001), Beijing Natural Science Foundation (No. JQ19004), the National Natural Science Foundation of China (Nos. 52025023, 51991340, and 51991342), National Key R & D Program of China (Nos. 2016YFA0300903 and 2016YFA0300804), Beijing Excellent Talents Training Support (No. 2017000026833ZK11), Beijing Municipal Science & Technology Commission (No. Z191100007219005), Beijing Graphene Innovation Program (No. Z181100004818003), The Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB33000000), Bureau of Industry and Information Technology of Shenzhen (Graphene platform No. 201901161512), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06D348), the Science, Technology, Innovation Commission of Shenzhen Municipality (No. KYTDPT20181011104202253), The Pearl River Talent Recruitment Program of Guangdong Province (No. 2019ZT08C321), and China Postdoctoral Science Foundation (Nos. 2019M660280, 2019M660281, and 2020T130022).

Return