Journal Home > Volume 15 , Issue 2

Structural ordering in the concentrated magnetic colloids containing 50 × 5 nm hard magnetic disc-like SrFe12O19 nanoparticles was investigated by cryogenic scanning electron microscopy, optical microscopy, magnetic measurements, and small-angle X-ray scattering. It was revealed that macroscopically homogeneous magnetic liquid consists of dynamic threads of stacked nanoparticles. The threads align into quasiperiodic arrays with the distances between individual threads of a few micrometers. They also can form pseudodomain structures with ~ 90° domain boundaries realized through T-type thread interconnects. The effects of magnetic attraction and electrostatic repulsion on the equilibrium interplatelet distance in the threads were studied. It was demonstrated that this distance can be tuned by the control of the particles charge and electric double layer screening from Stern layer thickness (~ 1 nm) to tens of nanometers. It was shown that the permanent magnetic field is not able to cause any structural changes in the ordered magnetic liquid phase, while alternating field draws particles apart by their vibrations. External variation of interparticle distance up to 6% was achieved using an alternating magnetic field of low intensity. Experimental data were complemented by the theoretical models of screened electrostatic interactions between spherical and platelike magnetic particles. The last model provides good predictive power and correlates with the experimental data. The stabilization energy of the condensed phase in the order of 1-10 kBT was derived from the model. An approach allows controlling of an equilibrium interparticle distance and interparticle distance distribution by adjusting the magnetization and surface charge of the particles as well as the ionic strength of the solvent.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tunable order in colloids of hard magnetic hexaferrite nanoplatelets

Show Author's information Artem A. Eliseev1( )Lev A. Trusov1,2Evgeny O. Anokhin1,3Andrei P. Chumakov4Vladimir V. Korolev3Anastasia E. Sleptsova3Peter Boesecke4Victoria I. Pryakhina5Vladimir Ya. Shur5Pavel E. Kazin1Andrei A. Eliseev3
Faculty of Chemistry Moscow State University, Leninskie Gory 1b3Moscow 119991 Russia
Department of Materials Science MSU-BIT UniversityShenzhen 517182 China
Faculty of Materials Science Moscow State University, Leninskie Gory 1b73Moscow 119991 Russia
European Synchrotron Radiation Facility, Avenue des Martyrs 71Grenoble 38043 France
School of Natural Sciences and Mathematics Ural Federal University, Lenin Ave 51Ekaterinburg 620000 Russia

Abstract

Structural ordering in the concentrated magnetic colloids containing 50 × 5 nm hard magnetic disc-like SrFe12O19 nanoparticles was investigated by cryogenic scanning electron microscopy, optical microscopy, magnetic measurements, and small-angle X-ray scattering. It was revealed that macroscopically homogeneous magnetic liquid consists of dynamic threads of stacked nanoparticles. The threads align into quasiperiodic arrays with the distances between individual threads of a few micrometers. They also can form pseudodomain structures with ~ 90° domain boundaries realized through T-type thread interconnects. The effects of magnetic attraction and electrostatic repulsion on the equilibrium interplatelet distance in the threads were studied. It was demonstrated that this distance can be tuned by the control of the particles charge and electric double layer screening from Stern layer thickness (~ 1 nm) to tens of nanometers. It was shown that the permanent magnetic field is not able to cause any structural changes in the ordered magnetic liquid phase, while alternating field draws particles apart by their vibrations. External variation of interparticle distance up to 6% was achieved using an alternating magnetic field of low intensity. Experimental data were complemented by the theoretical models of screened electrostatic interactions between spherical and platelike magnetic particles. The last model provides good predictive power and correlates with the experimental data. The stabilization energy of the condensed phase in the order of 1-10 kBT was derived from the model. An approach allows controlling of an equilibrium interparticle distance and interparticle distance distribution by adjusting the magnetization and surface charge of the particles as well as the ionic strength of the solvent.

Keywords: self-assembly, ferrofluid, hexaferrite, colloidal solution

References(36)

1

Yin, D. C. Protein crystallization in a magnetic field. Prog. Cryst. Growth Charact. Mater. 2015, 61, 1-26.

2

Hu, M. H.; Butt, H. J.; Landfester, K.; Bannwarth, M. B.; Wooh, S.; Thérien-Aubin, H. Shaping the assembly of superparamagnetic nanoparticles. ACS Nano 2019, 13, 3015-3022.

3

Martínez-Pedrero, F.; Ortega, F.; Codina, J.; Calero, C.; Rubio, R. G. Controlled disassembly of colloidal aggregates confined at fluid interfaces using magnetic dipolar interactions. J. Colloid Interface Sci. 2020, 560, 388-397.

4

Naud, C.; Thébault, C.; Carrière, M.; Hou, Y. X.; Morel, R.; Berger, F.; Diény, B.; Joisten, H. Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Adv. 2020, 2, 3632-3655.

5

Vlasova, K. Y.; Piroyan, A.; Le-Deygen, I. M.; Vishwasrao, H. M.; Ramsey, J. D.; Klyachko, N. L.; Golovin, Y. I.; Rudakovskaya, P. G.; Kireev, I. I.; Kabanov, A. V. et al. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). J. Colloid Interface Sci. 2019, 552, 689-700.

6

Yang, Y. C.; Liu, Q.; Zhao, T. Y.; Ru, Y. F.; Fang, R. X.; Xu, Y. C.; Huang, J.; Liu, M. J. Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis. Nano Res. 2021, 14, 255-259.

7

Qi, Y.; Müller, E. W.; Spiering, H.; Gütlich, P. The effect of a magnetic field on the high-spin α low-spin transition in [Fe(phen)2(NCS)2]. Chem. Phys. Lett. 1983, 101, 503-505.

8

Narita, F.; Fox, M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 2018, 20, 1700743.

9

Xue, G. M.; Zhang, P. L.; Li, X. Y.; He, Z. B.; Wang, H. G.; Li, Y. N.; Ce, R.; Zeng, W.; Li, B. A review of giant magnetostrictive injector (GMI). Sens. Actuators A Phys. 2018, 273, 159-181.

10

Pal, A.; Malik, V.; He, L.; Erné, B. H.; Yin, Y. D.; Kegel, W. K.; Petukhov, A. V. Tuning the colloidal crystal structure of magnetic particles by external field. Angew. Chem., Int. Ed. 2015, 54, 1803-1807.

11

Rupnik, P. M.; Lisjak, D.; Čopič, M.; Čopar, S.; Mertelj, A. Field-controlled structures in ferromagnetic cholesteric liquid crystals. Sci. Adv. 2017, 3, e1701336.

12

Mertelj, A.; Lampret, B.; Lisjak, D.; Klepp, J.; Kohlbrecher, J.; Čopič, M. Evolution of nematic and ferromagnetic ordering in suspensions of magnetic nanoplatelets. Soft Matter 2019, 15, 5412-5420.

13

Faraudo, J.; Andreu, J. S.; Camacho, J. Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: A review of concepts, theory and simulations. Soft Matter 2013, 9, 6654-6664.

14

Vasilescu, C.; Latikka, M.; Knudsen, K. D.; Garamus, V. M.; Socoliuc, V.; Turcu, R.; Tombácz, E.; Susan-Resiga, D.; Ras, R. H. A.; Vékás, L. High concentration aqueous magnetic fluids: Structure, colloidal stability, magnetic and flow properties. Soft Matter 2018, 14, 6648-6666.

15

Mertelj, A.; Lisjak, D. Ferromagnetic nematic liquid crystals. Liq. Cryst. Rev. 2017, 5, 1-33.

16

Mertelj, A.; Lisjak, D.; Drofenik, M.; Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 2013, 504, 237-241.

17

Nabeel Rashin, M.; Hemalatha, J. Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 2014, 54, 834-840.

18

Lukatskaya, M. R.; Trusov, L. A.; Eliseev, A. A.; Lukashin, A. V.; Jansen, M.; Kazin, P. E.; Napolskii, K. S. Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina. Chem. Commun. 2011, 47, 2396-2398.

19

Sun, L.; Hao, Y.; Chien, C. L.; Searson, P. C.; Searson, P. C. Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 2005, 49, 79-102.

20

Trusov, L. A.; Vasiliev, A. V.; Lukatskaya, M. R.; Zaytsev, D. D.; Jansen, M.; Kazin, P. E. Stable colloidal solutions of strontium hexaferrite hard magnetic nanoparticles. Chem. Commun. 2014, 50, 14581-14584.

21

Liu, Q. K.; Ackerman, P. J.; Lubensky, T. C.; Smalyukh, I. I. Biaxial ferromagnetic liquid crystal colloids. Proc. Natl. Acad. Sci. USA 2016, 113, 10479-10484.

22

Anokhin, E. O.; Trusov, L. A.; Kozlov, D. A.; Chumakov, R. G.; Sleptsova, A. E.; Uvarov, O. V.; Kozlov, M. I.; Petukhov, D. I.; Eliseev, A. A.; Kazin, P. E. Silica coated hard-magnetic strontium hexaferrite nanoparticles. Adv. Powder Technol. 2019, 30, 1976-1984.

23

Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M. et al. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nat. Commun. 2016, 7, 10394.

24

Eliseev, A. A.; Eliseev, A. A.; Trusov, L. A.; Chumakov, A. P.; Boesecke, P.; Anokhin, E. O.; Vasiliev, A. V.; Sleptsova, A. E.; Gorbachev, E. A.; Korolev, V. V. et al. Rotational dynamics of colloidal hexaferrite nanoplates. Appl. Phys. Lett. 2018, 113, 113106.

25

Grigoriev, S. V.; Syromyatnikov, A. V.; Chumakov, A. P.; Grigoryeva, N. A.; Napolskii, K. S.; Roslyakov, I. V.; Eliseev, A. A.; Petukhov, A. V.; Eckerlebe, H. Nanostructures: Scattering beyond the born approximation. Phys. Rev. B 2010, 81, 125405.

26

Colloidal Magnetic Fluids; Odenbach, S., Ed.; Lecture Notes in Physics; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009, 763.

27

Napolskii, K. S.; Roslyakov, I. V.; Eliseev, A. A.; Petukhov, A. V.; Byelov, D. V.; Grigoryeva, N. A.; Bouwman, W. G.; Lukashin, A. V.; Kvashnina, K. O.; Chumakov, A. P. et al. Long-range ordering in anodic alumina films: A microradian x-ray diffraction study. J. Appl. Crystallogr. 2010, 43, 531-538.

28

Martínez-Pedrero, F.; Tirado-Miranda, M.; Schmitt, A.; Callejas- Fernández, J. Primary and secondary bonds in field induced aggregation of electric double layered magnetic particles. Langmuir 2009, 25, 6658-6664.

29

Faraudo, J.; Camacho, J. Cooperative magnetophoresis of superparamagnetic colloids: Theoretical aspects. Colloid Polym. Sci. 2010, 288, 207-215.

30

Eliseev, A. A.; Lukashin, A. V. Functional Nanomaterials; Fizmatlit: Moscow, 2010.

31

Vokoun, D.; Beleggia, M.; Heller, L.; Šittner, P. Magnetostatic interactions and forces between cylindrical permanent magnets. J. Magn. Magn. Mater. 2009, 321, 3758-3763.

32

Hribar Boštjančič, P.; Tomšič, M.; Jamnik, A.; Lisjak, D.; Mertelj, A. Electrostatic interactions between barium hexaferrite nanoplatelets in alcohol suspensions. J. Phys. Chem. C 2019, 123, 23272-23279.

33

Agra, R.; Trizac, E.; Bocquet, L. The interplay between screening properties and colloid anisotropy: Towards a reliable pair potential for disc-like charged particles. Eur. Phys. J. E 2004, 15, 345-357.

34

Gorbachev, E. A.; Trusov, L. A.; Sleptsova, A. E.; Anokhin, E. O.; Zaitsev, D. D.; Vasiliev, A. V.; Eliseev, A. A.; Kazin, P. E. Synthesis and magnetic properties of the exchange-coupled SrFe10.7Al1.3O19/Co composite. Mendeleev Commun. 2018, 28, 401-403.

35

Brown, M. A.; Goel, A.; Abbas, Z. Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. , Int. Ed. 2016, 55, 3790-3794.

36

Bacri, J. C.; Perzynski, R.; Shliomis, M. I.; Burde, G. I. "Negative-viscosity" effect in a magnetic fluid. Phys. Rev. Lett. 1995, 75, 2128-2131.

File
12274_2021_3572_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2021
Revised: 02 May 2021
Accepted: 04 May 2021
Published: 09 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

In the part concerning synthesis of Al substituted hexaferrite nanoparticles the work was supported by the Russian Science Foundation (RSF) (No. 20-73-10129). AnAE acknowledge RFBR (No. 18-29-19105) for support in part of SAXS characterization technique development for stacked layered structures. We acknowledge the European Synchrotron Radiation Facility for provision of beamtime and the staff of ID-02 beamline for technical support during the experiments. The authors are also thankful to the Lomonosov Moscow State University Program of Development for the support of instrumental studies. The equipment of the Ural Center for Shared Use Modern Nanotechnology of Ural Federal University was used.

Return