Journal Home > Volume 15 , Issue 2

Carbon nanotubes (CNTs) are ideal candidates for beyond-silicon nano-electronics because of their high mobility and low-cost processing. Recently, assembled massively aligned CNTs have emerged as an important platform for semiconductor electronics. However, realizing sophisticated complementary nano-electronics has been challenging due to the p-type nature of carbon nanotubes in air. Fabrication of n-type behavior field effect transistors (FETs) based on assembled aligned CNT arrays is needed for advanced CNT electronics. Here in this paper, we report a scalable process to make n-type behavior FETs based on assembled aligned CNT arrays. Air-stable and high-performance n-type behavior CNT FETs are achieved with high yield by combining the atomic layer deposition dielectric and metal contact engineering. We also systematically studied the contribution of metal contacts and atomic layer deposition passivation in determining the transistor polarity. Based on these experimental results, we report the successful demonstration of complementary metal-oxide-semiconductor inverters with good performance, which paves the way for realizing the promising future of carbon nanotube nano-electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal- oxide-semiconductor electronics

Show Author's information Zhen Li1Katherine R. Jinkins2Dingzhou Cui1Mingrui Chen1Zhiyuan Zhao1Michael S. Arnold2Chongwu Zhou1( )
Ming Hsieh Department of Electrical Engineering Mork Family Department of Chemical Engineering and Materials Science, and Department of Physics and Astronomy University of Southern CaliforniaLos AngelesCalifornia 90089 USA
Department of Materials Science and Engineering University of Wisconsin-MadisonMadisonWisconsin 53706 USA

Abstract

Carbon nanotubes (CNTs) are ideal candidates for beyond-silicon nano-electronics because of their high mobility and low-cost processing. Recently, assembled massively aligned CNTs have emerged as an important platform for semiconductor electronics. However, realizing sophisticated complementary nano-electronics has been challenging due to the p-type nature of carbon nanotubes in air. Fabrication of n-type behavior field effect transistors (FETs) based on assembled aligned CNT arrays is needed for advanced CNT electronics. Here in this paper, we report a scalable process to make n-type behavior FETs based on assembled aligned CNT arrays. Air-stable and high-performance n-type behavior CNT FETs are achieved with high yield by combining the atomic layer deposition dielectric and metal contact engineering. We also systematically studied the contribution of metal contacts and atomic layer deposition passivation in determining the transistor polarity. Based on these experimental results, we report the successful demonstration of complementary metal-oxide-semiconductor inverters with good performance, which paves the way for realizing the promising future of carbon nanotube nano-electronics.

Keywords: field effect transistor, carbon nanotube, air-stable, complementary metal-oxide-semiconductor

References(49)

1

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

2

Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.

3

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

4

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

5

Zhou, C. W.; Kong, J.; Yenilmez, E.; Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 2000, 290, 1552–1555.

6

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

7

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

8

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

9

Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.

10

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

11

Han, S. J.; Tang, J. S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865.

12

Liu, J.; Wang, C.; Tu, X. M.; Liu, B. L.; Chen, L.; Zheng, M.; Zhou, C. W. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 2012, 3, 1199.

13

Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

14

Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

15

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechmol. 2011, 6, 788–792.

16

Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high- performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.

17

Park, S.; Vosguerichian, M.; Bao, Z. N. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.

18

Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

19

Xiang, L.; Zhang, H.; Dong, G. D.; Zhong, D. L.; Han, J.; Liang, X. L.; Zhang, Z. Y.; Peng, L. M.; Hu, Y. F. Low-power carbon nanotube- based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 2018, 1, 237–245.

20

Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

21

Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

22

Tang, J. S.; Cao, Q.; Tulevski, G.; Jenkins, K. A.; Nela, L.; Farmer, D. B.; Han, S. J. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191–196.

23

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

24

Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

25

Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.

26

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368, 850–856.

27

Cao, Y.; Brady, G. J.; Gui, H.; Rutherglen, C.; Arnold, M. S.; Zhou, C. W. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 2016, 10, 6782–6790.

28

Rutherglen, C.; Kane, A. A.; Marsh, P. F.; Cain. T. A.; Hassan, B. I.; Alshareef, M. R.; Zhou, C. W.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530–539.

29

Zhong, D. L.; Shi, H. W.; Ding, L.; Zhao, C. Y.; Liu, J. X.; Zhou, J. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz. ACS Appl. Mater. Interfaces 2019, 11, 42496–42503.

30

Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

31

Wei, H.; Chen, H. Y.; Liyanage, L.; Wong, H. S. P.; Mitra, S. Air-stable technique for fabricating n-type carbon nanotube FETs. In Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011, pp 23.2. 1–23.2. 4.

32

Li, G. H.; Li, Q. Q.; Jin, Y. H.; Zhao, Y. D.; Xiao, X. Y.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. Nanoscale 2015, 7, 17693–17701.

33

Tang, J. S.; Farmer, D.; Bangsaruntip, S.; Chiu, K. C.; Kumar, B.; Han, S. J. Contact engineering and channel doping for robust carbon nanotube NFETs. In Proceedings of 2017 International Symposium on VLSI Technology, Systems and Application, Hsinchu, China, 2017, pp 1–2.

34

Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High- performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.

35

Brady, G. J.; Joo, Y.; Roy, S. S.; Gopalan, P.; Arnold, M. S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107.

36

Kang, D. H.; Park, N.; Ko, J. H.; Bae, E.; Park, W. Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 2005, 16, 1048–1052

37

Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033.

38

Park, R. S.; Shulaker, M. M.; Hills, G.; Liyanage, L. S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599–4608.

39

Jin, S. H.; Islam, A. E.; Kim, T. I.; Kim, J. H.; Alam, M. A.; Rogers, J. A. Sources of hysteresis in carbon nanotube field-effect transistors and their elimination via methylsiloxane encapsulants and optimized growth procedures. Adv. Funct. Mater. 2012, 22, 2276–2284.

40

Franklin, A. D.; Farmer, D. B.; Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 2014, 8, 7333–7339.

41

Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

42

Baranovskii, S. D.; Nenashev, A. V.; Oelerich, J. O.; Greiner, S. H. M.; Dvurechenskii, A. V.; Gebhard, F. Percolation description of charge transport in the random barrier model applied to amorphous oxide semiconductors. EPL Eur. Lett. 2019, 127, 57004

43

Zavabeti, A.; Zhang, B. Y.; de Castro, I. A.; Ou, J. Z.; Carey, B. J.; Mohiuddin, M.; Datta, R. S.; Xu, C. L.; Mouritz, A. P.; McConville, C. F. et al. Green synthesis of low-dimensional aluminum oxide hydroxide and oxide using liquid metal reaction media: Ultrahigh flux membranes. Adv. Funct. Marer. 2018, 28, 1804057.

44

Jinkins, K. R.; Chan, J.; Jacobberger, R. M.; Berson, A.; Arnold, M. S. Substrate-wide confined shear alignment of carbon nanotubes for thin film transistors. Adv. Electron. Mater. 2019, 5, 1800593.

45

Moriyama, N.; Ohno, Y.; Kitamura, T.; Kishimoto, S.; Mizutani, T. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges. Nanotechnology 2010, 21, 165201.

46

Rinkiö, M.; Johansson, A.; Zavodchikova, M. Y.; Toppari, J. J.; Nasibulin, A. G.; Kauppinen, E. I.; Törmä, P. High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New J. Phys. 2008, 10, 103019.

47

Mudimela, P. R.; Grigoras, K.; Anoshkin, I. V.; Varpula, A.; Ermolov, V.; Anisimov, A. S.; Nasibulin, A. G.; Novikov, S.; Kauppinen, E. I. Single-walled carbon nanotube network field effect transistor as a humidity sensor. J. Sens. 2012, 2012, 496546.

48

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.

49

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low- power thin-film transistors based on multilayer MoS2 crystals. Nat Commun. 2012, 3, 1011.

File
12274_2021_3567_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 March 2021
Revised: 28 April 2021
Accepted: 01 May 2021
Published: 10 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the financial support from National Science Foundation (NSF) via SNM-IS Award (No. 1727523). A portion of the images and data used in this article were acquired at the Center for Electron Microscopy and Microanalysis, University of Southern California.

Return