Journal Home > Volume 14 , Issue 10

All-inorganic perovskite solar cells suffer from low performance due to unsatisfactory carrier transport and light harvesting efficiency. Semiconductor nanopillar arrays can reduce light reflection loss and suppress exciton recombination dynamics in optoelectronic devices. In all-inorganic perovskite solar cells, few studies employing TiO2 nanopillar arrays (TiO2 NaPAs) have been reported to improve the device performance. Herein, well-arranged TiO2 NaPAs are chosen to enhance the interfacial contact between perovskite and electron transporting layers for improving the carrier transport. Notably, TiO2 NaPAs can be directly fabricated on rigid/flexible substrates at roughly room temperature by unique glancing angle deposition, which is more available than high-temperature hydrothermal/solvothermal methods. By embedding TiO2 NaPAs into chemical processable CsPbI2Br layers, continuous and intimate films are readily formed, guaranteeing large physical contact for facilitating more effective electron injection and charge separation. The vertically grown TiO2 NaPAs also provide a straightforward electron transporting path to electrodes. In addition, TiO2 NaPAs can guide the incident light and enhance the light-harvesting ability of CsPbI2Br films. As a result, the solar cell with TiO2 NaPAs displays a power conversion efficiency of 11.35% higher than planar control of 10.04%, and exhibits better long-term thermal stability. This strategy provides an opportunity by constructing direct interfacial regulation towards the performance improvement of inorganic perovskite solar cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface engineering of high performance all-inorganic perovskite solar cells via low-temperature processed TiO2 nanopillar arrays

Show Author's information Bingkun PanJiahao GuXiaoli XuLingbo XiaoJie Zhao( )Guifu Zou( )
College of Energy,Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Material and Wearable Energy Technologies of Jiangsu Province, Soochow University,Suzhou,215006,China;

Abstract

All-inorganic perovskite solar cells suffer from low performance due to unsatisfactory carrier transport and light harvesting efficiency. Semiconductor nanopillar arrays can reduce light reflection loss and suppress exciton recombination dynamics in optoelectronic devices. In all-inorganic perovskite solar cells, few studies employing TiO2 nanopillar arrays (TiO2 NaPAs) have been reported to improve the device performance. Herein, well-arranged TiO2 NaPAs are chosen to enhance the interfacial contact between perovskite and electron transporting layers for improving the carrier transport. Notably, TiO2 NaPAs can be directly fabricated on rigid/flexible substrates at roughly room temperature by unique glancing angle deposition, which is more available than high-temperature hydrothermal/solvothermal methods. By embedding TiO2 NaPAs into chemical processable CsPbI2Br layers, continuous and intimate films are readily formed, guaranteeing large physical contact for facilitating more effective electron injection and charge separation. The vertically grown TiO2 NaPAs also provide a straightforward electron transporting path to electrodes. In addition, TiO2 NaPAs can guide the incident light and enhance the light-harvesting ability of CsPbI2Br films. As a result, the solar cell with TiO2 NaPAs displays a power conversion efficiency of 11.35% higher than planar control of 10.04%, and exhibits better long-term thermal stability. This strategy provides an opportunity by constructing direct interfacial regulation towards the performance improvement of inorganic perovskite solar cells.

Keywords: interface engineering, TiO2 nanopillar arrays, carrier transporting, all-inorganic perovskite solar cells, low-temperature processed

References(62)

1

Zeng, Q. S.; Zhang, X. Y.; Liu, C. M.; Feng, T. L.; Chen, Z. L.; Zhang, W.; Zheng, W. T.; Zhang, H.; Yang, B. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective. Solar RRL 2019, 3, 1800239.

2

Zhang, J. R.; Hodes, G.; Jin, Z. W.; Liu, S. Z. F. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew. Chem. , Int. Ed. 2019, 58, 15596-15618.

3

Duan, J. L.; Xu, H. Z.; Sha, W. E. I.; Zhao, Y. Y.; Wang, Y. D.; Yang, X. Y.; Tang, Q. W. Inorganic perovskite solar cells: An emerging member of the photovoltaic community. J. Mater. Chem. A 2019, 7, 21036-21068.

4
National Renewable Energy Laboratory. Best Research-Cell Efficiencies[Online]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf (accessed May 28, 2021).
5

Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.

6

Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406-3410.

7

Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982-988.

8

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476-480.

9

Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-Tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

10

Jiang, J. X.; Jin, Z. W.; Lei, J.; Wang, Q.; Zhang, X. S.; Zhang, J. R.; Gao, F.; Liu, S. Z. F. ITIC surface modification to achieve synergistic electron transport layer enhancement for planar-type perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 2017, 5, 9514-9522.

11

Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885.

12

Jiang, Q.; Zhang, L. Q.; Wang, H. L.; Yang, X. L.; Meng, J. H.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3- based perovskite solar cells. Nat. Energy 2017, 2, 16177.

13

Wang, Q.; Zhang, X. S.; Jin, Z. W.; Zhang, J. R.; Gao, Z. F.; Li, Y. F.; Liu, S. Z. F. Energy-down-shift CsPbCl3: Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett. 2017, 2, 1479-1486.

14

Nie, W. Y.; Blancon, J. C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 2016, 7, 11574.

15

Li, Y. Z.; Xu, X. M.; Wang, C. C.; Ecker, B.; Yang, J. L.; Huang, J. S.; Gao, Y. L. Light-Induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 2017, 121, 3904-3910.

16

Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.

17

Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225.

18

Xiang, W. C.; Tress, W. Review on recent progress of all-inorganic metal halide perovskites and solar cells. Adv. Mater. 2019, 31, 1902851.

19

Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano. Lett. 2013, 13, 2412- 2417.

20

Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Fan, L. Q.; Luo, G. G. Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136-2173.

21

Cong, S.; Zou, G. F.; Lou, Y. H.; Yang, H.; Su, Y.; Zhao, J.; Zhang, C.; Ma, P. P.; Lu, Z.; Fan, H. Y. et al. Fabrication of nickel oxide nanopillar arrays on flexible electrodes for highly efficient perovskite solar cells. Nano Lett. 2019, 19, 3676-3683.

22

De Wolf, S.; Holovsky, J.; Moon, S. J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035-1039.

23

Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739-744.

24

Tian, J. J.; Xue, Q. F.; Yao, Q.; Li, N.; Brabec, C. J.; Yip, H. L. Inorganic halide perovskite solar cells: Progress and challenges. Adv. Energy Mater. 2020, 10, 2000183.

25

Xu, X. L.; Xiao, L. B.; Zhao, J.; Pan, B. K.; Li, J.; Liao, W. Q.; Xiong, R. G.; Zou, G. F. Molecular ferroelectrics-driven high-performance perovskite solar cells. Angew. Chem. , Int. Ed. 2020, 59, 19974- 19982.

26

Stewart, R. J.; Grieco, C.; Larsen, A. V.; Maier, J. J.; Asbury, J. B. Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation. J. Phys. Chem. Lett. 2016, 7, 1148-1153.

27

Kennedy, C. L.; Hill, A. H.; Massaro, E. S.; Grumstrup, E. M. Ultrafast excited-state transport and decay dynamics in cesium lead mixed halide perovskites. ACS Energy Lett. 2017, 2, 1501-1506.

28

Hill, A. H.; Smyser, K. E.; Kennedy, C. L.; Massaro, E. S.; Grumstrup, E. M. Screened charge carrier transport in methylammonium lead iodide perovskite thin films. J. Phys. Chem. Lett. 2017, 8, 948-953.

29

Burwig, T.; Fränzel, W.; Pistor, P. Crystal phases and thermal stability of co-evaporated CsPbX3 (X = I, Br) thin films. J. Phys. Chem. Lett. 2018, 9, 4808-4813.

30

Sharma, S.; Weiden, N.; Weiss, A. Phase diagrams of quasibinary systems of the type: ABX3-A'BX3; ABX3-AB'X3, and ABX3-ABX'3; X = halogen. Z. Phy. Chem. 1992, 175, 63-80.

31

McHale, J. M.; Auroux, A.; Perrotta, A. J.; Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 1997, 277, 788-791.

32

Wang, Q.; Zheng, X. P.; Deng, Y. H.; Zhao, J. J.; Chen, Z. L.; Huang, J. S. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 2017, 1, 371-382.

33

Li, C. P.; Lv, X. D.; Cao, J.; Tang, Y. Tetra-ammonium zinc phthalocyanine to construct a graded 2D-3D perovskite interface for efficient and stable solar cells. Chin. J. Chem. 2019, 37, 30-34.

34

Li, B.; Zhang, Y. N.; Fu, L.; Yu, T.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.

35

Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825-3828.

36

Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 2016, 1, 16178.

37

Ouedraogo, N. A. N.; Chen, Y. C.; Xiao, Y. Y.; Meng, Q.; Han, C. B.; Yan, H.; Zhang, Y. Z. Stability of all-inorganic perovskite solar cells. Nano Energy 2020, 67, 104249.

38

Yang, S. Z.; Wang, L.; Gao, L. G.; Cao, J. M.; Han, Q. J.; Yu, F. Y.; Kamata, Y.; Zhang, C.; Fan, M. Q.; Wei, G. Y. et al. Excellent moisture stability and efficiency of inverted all-inorganic CsPbIBr2 perovskite solar cells through molecule interface engineering. ACS Appl. Mater. Interfaces 2020, 12, 13931-13940.

39

Ma, J.; Su, J.; Lin, Z. H.; Zhou, L.; He, J.; Zhang, J. C.; Liu, S. Z.; Chang, J. J.; Hao, Y. Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells. Nano Energy 2020, 67, 104241.

40

Duan, C. Y.; Cui, J.; Zhang, M. M.; Han, Y.; Yang, S. M; Zhao, H.; Bian, H. T.; Yao, J. X.; Zhao, K.; Liu, Z. K. et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000691.

41

Zhu, W. D.; Chai, W. M.; Chen, D. D.; Ma, J. X.; Chen, D. Z.; Xi, H.; Zhang, J. C.; Zhang, C. F.; Hao, Y. High-efficiency (> 14%) and air-stable carbon-based, all-inorganic CsPbI2Br perovskite solar cells through a top-seeded growth strategy. ACS Energy Lett. 2021, 6, 1500-1510.

42

Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082-1087.

43

Sheng, X.; Xu, T.; Feng, X. J. Rational design of photoelectrodes with rapid charge transport for photoelectrochemical applications. Adv. Mater. 2019, 31, 1805132.

44

Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69-74.

45

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 2019, 13, 460-466.

46

Wetzelaer, G. J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; ·vila, J.; Bolink, H. J. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 2015, 27, 1837-1841.

47

Deng, J. P.; Li, J. L.; Yang, Z.; Wang, M. Q. All-Inorganic lead halide perovskites: A promising choice for photovoltaics and detectors. J. Mater. Chem. C 2019, 7, 12415-12440.

48

Zeng, Z. B.; Zhang, J.; Gan, X. L.; Sun, H. R.; Shang, M. H.; Hou, D. G.; Lu, C. J.; Chen, R. J.; Zhu, Y. J.; Han, L. Y. In situ grain boundary functionalization for stable and efficient inorganic CsPbI2Br perovskite solar cells. Adv. Energy Mater. 2018, 8, 1801050.

49

Hawkeye, M. M.; Brett, M. J. Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. A 2007, 25, 1317-1335.

50

Lu, L. F.; Xu, Z.; Zhang, F. J.; Zhao, S. L.; Wang, L. W.; Zhuo, Z. L.; Song, D. D.; Zhu, H. N.; Wang, Y. S. Using ZnS nanostructured thin films to enhance light extraction from organic light-emitting diodes. Energy Fuels 2010, 24, 3743-3747.

51
Koizumi, S.; Umezawa, H.; Pernot, J.; Suzuki, M. Power Electronics Device Applications of Diamond Semiconductors; Woodhead Publishing: Duxford, 2018.
52

Parisini, A.; Fornari, R. Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci. Technol. 2016, 31, 035023.

53

Wang, L. L.; Fan, B. B.; Zheng, B.; Yang, Z. B.; Yin, P. G.; Huo, L. J. Organic functional materials: Recent advances in all-inorganic perovskite solar cells. Sustain. Energy Fuels 2020, 4, 2134-2148.

54
Hergert, W.; Wriedt, T. The Mie Theory: Basics and Applications; Springer: Berlin, Heidelberg, Germany, 2012.https://doi.org/10.1007/978-3-642-28738-1
DOI
55

Yang, Y.; Liu, C.; Ding, Y.; Arain, Z.; Wang, S. Q.; Liu, X. P.; Hayat, T.; Alsaedi, A.; Dai, S. Y. Eliminating charge accumulation via interfacial dipole for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 34964-34972.

56

Fan, X.; Fang, G. J.; Cheng, F.; Qin, P. L.; Huang, H. H.; Li, Y. F. Enhanced performance and stability in PBDTTT-C-T: PC70BM polymer solar cells by optimizing thickness of NiOx buffer layers. J. Phys. D Appl. Phys. 2013, 46, 305106.

57

Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. F. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.

58

Liu, C.; Cai, M. L.; Yang, Y.; Arain, Z.; Ding, Y.; Shi, X. Q.; Shi, P. J.; Ma, S.; Hayat, T.; Alsaedi, A. et al. A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. J. Mater. Chem. A 2019, 7, 11086-11094.

59

Wei, J.; Wang, X.; Sun, X. Y.; Yang, Z. F.; Moreels, I.; Xu, K.; Li, H. B. Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Res. 2020, 13, 684-690.

60

Liu J. M.; Zhu L. Q.; Xiang S. S.; Wang H. L.; Liu H. C.; Li W. P.; Chen H. N. Cs-Doped TiO2 nanorod array enhances electron injection and transport in carbon-based cspbi3 perovskite solar cells. ACS Sustain. Chem. Eng. 2019, 7, 16927-16932.

61

Liu, Z. Y.; Chang, J. J.; Lin, Z. H.; Zhou, L.; Yang, Z.; Chen, D. Z.; Zhang, C. F.; Liu, S. Z. F.; Hao, Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 2018, 8, 1703432.

62

Bartesaghi, D.; Pérez, I. D. C.; Kniepert, J.; Roland, S.; Turbiez, M.; Neher, D.; Koster, L. J. A. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 2015, 6, 7083.

File
12274_2021_3566_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2021
Revised: 29 March 2021
Accepted: 01 May 2021
Published: 04 June 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 21971172 and 21671141), the National Natural Science Foundation of Jiangsu Province (No. BK20191425), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions for Optical Engineering, and Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering (No. SKLPST201902).

Return