Journal Home > Volume 15 , Issue 2

Organic crystals, especially ultra-thin two-dimensional (2D) ones such as monolayer molecular crystals, are fragile and vulnerable to traditional vacuum deposition. Up to now, most of the methods reported for fabricating organic field-effect transistors (OFETs) with top-electrodes on the 2D molecular crystals are based on mechanical-transfer method. Nondestructive method for large scale in-situ electrode deposition is urgent. In this work, the silver mirror reaction (SMR) is introduced to construct top-contact electrodes on 2D organic crystalline thin films. OFETs based on bilayer crystalline films with solution-processed silver electrodes show comparable performance to devices with transferred gold electrodes. In addition to that, OFETs with SMR fabricated silver electrodes show lower contact resistance than the ones with evaporated silver electrodes. Furthermore, the temperature under which SMR electrodes annealed is relatively low (60 ℃), making this approach applicable to varies of organic semiconductors, such as spin-coated polymer films, vacuum evaporated films, 2D and even monolayer crystalline films. Besides, OFETs with sub-micrometer channel width and 25 μm channel length are realized which might find practical application in the ultra-small pixel mini/micro-LEDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Solution-processed top-contact electrodes strategy for organic crystalline field-effect transistor arrays

Show Author's information Xi Zhang1,2Xiaotong Zhao1Limei Rao1Jing Zhang1Mingchao Xiao1Danlei Zhu1Chunlei Li1Xiaosong Shi1Jie Liu1Jie Liu1( )Lang Jiang1( )
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of SciencesBeijing100190China
University of the Chinese Academy of SciencesBeijing100049China

Abstract

Organic crystals, especially ultra-thin two-dimensional (2D) ones such as monolayer molecular crystals, are fragile and vulnerable to traditional vacuum deposition. Up to now, most of the methods reported for fabricating organic field-effect transistors (OFETs) with top-electrodes on the 2D molecular crystals are based on mechanical-transfer method. Nondestructive method for large scale in-situ electrode deposition is urgent. In this work, the silver mirror reaction (SMR) is introduced to construct top-contact electrodes on 2D organic crystalline thin films. OFETs based on bilayer crystalline films with solution-processed silver electrodes show comparable performance to devices with transferred gold electrodes. In addition to that, OFETs with SMR fabricated silver electrodes show lower contact resistance than the ones with evaporated silver electrodes. Furthermore, the temperature under which SMR electrodes annealed is relatively low (60 ℃), making this approach applicable to varies of organic semiconductors, such as spin-coated polymer films, vacuum evaporated films, 2D and even monolayer crystalline films. Besides, OFETs with sub-micrometer channel width and 25 μm channel length are realized which might find practical application in the ultra-small pixel mini/micro-LEDs.

Keywords: organic field-effect transistors, solution processed electrodes, top contact, organic crystalline thin films

References(50)

1

Qian, J.; Jiang, S.; Li, S. L.; Wang, X. R.; Shi, Y.; Li, Y. Solution- processed 2D molecular crystals: fabrication techniques, transistor applications, and physics. Adv. Mater. Technol. 2019, 4, 1800182.

2

Liu, J.; Jiang, L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Monolayer organic field–effect transistors. Sci. China: Chem. 2019, 62, 313–330.

3

Fan, Y. W.; Liu, J.; Hu, W. P.; Liu, Y. Q.; Jiang, L. The effect of thickness on the optoelectronic properties of organic field-effect transistors: Towards molecular crystals at monolayer limit. J. Mater. Chem. C 2020, 8, 13154–13168.

4

Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two- dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

5

Li, H. Y.; Li, Y.; Li, H.; Brédas, J. L. Organic field-effect transistors: A 3D kinetic monte carlo simulation of the current characteristics in micrometer–sized devices. Adv. Funct. Mater. 2017, 27, 1605715.

6

Jiang, L. F.; Liu, J.; Shi, Y. J.; Zhu, D. L.; Zhang, H. T.; Hu, Y. Y.; Yu, J. S.; Hu, W. P.; Jiang, L. Realizing low-voltage operating crystalline monolayer organic field–effect transistors with a low contact resistance. J. Mater. Chem. C 2019, 7, 3436–3442.

7

Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom–up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 2018, 9, 2933.

8

Jiang, L. F.; Liu, J.; Lu, X. Q.; Fu, L. L.; Shi, Y. J.; Zhang, J.; Zhang, X.; Geng, H.; Hu, Y. Y.; Dong, H. L. et al. Controllable growth of C8-BTBT single crystalline microribbon arrays by a limited solvent vapor–assisted crystallization (LSVC) method. J. Mater. Chem. C 2018, 6, 2419–2423.

9

Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution- processed monolayer organic crystals for high-performance field- effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 2017, 27, 1700999.

10

Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer- scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv. 2018, 4, eaao5758.

11

Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D molecular semiconductors: 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating–coffee–ring–driven assembly (Adv. Funct. Mater. 19/2016). Adv. Funct. Mater. 2016, 26, 3191–3198.

12

Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat Commun. 2019, 10, 5589.

13

He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin–film transistors on boron nitride. Sci. Adv. 2017, 3, e1701186.

14

Wang, Y.; Zhang, J. Y.; Zhang, S. Q.; Huang, J. OFET chemical sensors: Chemical sensors based on ultrathin organic field-effect transistors. Polym. Int. 2021, 70, 414–425.

15

Fang, L.; Dai, S. L.; Zhao, Y. W.; Liu, D. P.; Huang, J. Light-stimulated artificial synapses based on 2D organic field-effect transistors. Adv. Electron. Mater. 2020, 6, 1901217.

16

Wang, W.; Lu, B.; Deng, W.; Zhang, X. J.; Lu, Z. J.; Wu, D.; Jie, J. S.; Zhang, X. H. Controlled 2D growth of organic semiconductor crystals by suppressing "coffee-ring" effect. Nano Res. 2020, 13, 2478–2484.

17

Wang, J. W.; Deng, W.; Wang, W.; Jia, R. F.; Xu, X. Z.; Xiao, Y. L.; Zhang, X. J.; Jie, J. S.; Zhang, X. H. External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Res. 2019, 12, 2796–2801.

18

Shi, C. Y.; Zhang, Q.; Tian, H.; Qu, D. H. Supramolecular adhesive materials from small-molecule self-assembly. SmartMat. 2020, 1, e1012.

19

Hu, D. B.; Wang, X. M.; Chen, H. P.; Guo, T. L. High performance flexible nonvolatile memory based on vertical organic thin film transistor. Adv. Funct. Mater. 2017, 27, 1703541.

20

Zhong, J. F.; Wu, X. M.; Lan, S. Q.; Fang, Y.; Chen, H. P.; Guo, T. L. High performance flexible organic phototransistors with ultrashort channel length. ACS Photonics 2018, 5, 3712–3722.

21

He, W.; Zang, H.; Cai, S. H.; Mu, Z. Y.; Liu, C.; Ding, M. N.; Wang, P.; Wang, X. R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Res. 2020, 13, 2917–2924.

22

Zhang, G. B.; Chen, R. K.; Sun, M. X.; Kim, M.; Wang, W. W.; Qiu, L. Z.; Cho, K.; Ding, Y. S. One–step synthesis of an acceptor–donor– acceptor small molecule based on indacenodithieno[3, 2–b]thiophene and benzothiadiazole units for high–performance solution-processed organic field–effect transistors. J. Mater. Chem. C 2020, 8, 14180– 14185.

23

Zhang, G. B.; Chen, R. K.; Sun, Y.; Kang, B.; Sun, M. X.; Lu, H. B.; Qiu, L. Z.; Cho, K.; Ding, Y. S. Improved charge transport in fused- ring bridged hemi-isoindigo-based small molecules by incorporating a thiophene unit for solution-processed organic field–effect transistors. J. Mater. Chem. C 2020, 8, 1398–1404.

24

Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. N. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765.

25

Li, H. B.; Wu, J. K.; Takahashi, K.; Ren, J.; Wu, R. H.; Cai, H. Y.; Wang, J. R.; Xin, H. L.; Miao, Q.; Yamada, H. et al. Organic heterojunctions formed by interfacing two single crystals from a mixed solution. J. Am. Chem. Soc. 2019, 141, 10007–10015.

26

Wang, L.; Zhang, X. J.; Dai, G. L.; Deng, W.; Jie, J. S.; Zhang, X. H. High-mobility air-stable n-type field-effect transistors based on large–area solution–processed organic single-crystal arrays. Nano Res. 2018, 11, 882–891.

27

Yang, F. X.; Sun, L. J.; Duan, Q. X.; Dong, H. L.; Jing, Z. K.; Yang, Y. C.; Li, R. J.; Zhang, X. T.; Hu, W. P.; Chua, L. Vertical-organic-nanocrystal- arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2021, 2, 99–108.

28

Fang, Y.; Wu, X. M.; Lan, S. Q.; Zhong, J. F.; Sun, D. W.; Chen, H. P.; Guo, T. L. Inkjet-printed vertical organic field-effect transistor arrays and their image sensors. ACS Appl. Mater. Interfaces 2018, 10, 30587–30595.

29

Yang, J.; Wang, H. L.; Chen, J. Y.; Huang, J. Y.; Jiang, Y. Y.; Zhang, J. Q.; Shi, L. X.; Sun, Y. L.; Wei, Z. X.; Yu, G. et al. Bis- diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors. Adv. Mater. 2017, 29, 1606162.

30

Yang, J.; Zhao, Z. Y.; Geng, H.; Cheng, C. L.; Chen, J. Y.; Sun, Y. L.; Shi, L. X.; Yi, Y.; Shuai, Z. G.; Guo, Y. L. et al. Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv. Mater. 2017, 29, 1702115.

31

Yang, J.; Jiang, Y. Q.; Tu, Z. Y.; Zhao, Z. Y.; Chen, J. Y.; Yi, Z. R.; Li, Y. F.; Wang, S.; Yi, Y. P.; Guo, Y. L. et al. High-performance ambipolar polymers based on electron-withdrawing group substituted bay–annulated indigo. Adv. Funct. Mater. 2019, 29, 1804839.

32

Tang, Q. X.; Tong, Y. H.; Li, H. X.; Ji, Z. Y.; Li, L. Q.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. High-performance air-stable bipolar field- effect transistors of organic single–crystalline ribbons with an air- gap dielectric. Adv. Mater. 2008, 20, 1511–1515.

33

Peng, B. Y.; Cao, K.; Lau, A. H. Y.; Chen, M.; Lu, Y.; Chan, P. K. L. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density. Adv. Mater. 2020, 32, 2002281.

34

Ji, D. Y.; Jiang, L.; Dong, H. L.; Meng, Q.; Zhen, Y. G.; Hu, W. P. Silver mirror reaction for organic electronics: towards high-performance organic field-effect transistors and circuits. J. Mater. Chem. C. 2014, 2, 4142–4146.

35

Ji, D. Y.; Jiang, L.; Guo, Y. L.; Dong, H. L.; Wang, J. P.; Chen, H. J.; Meng, Q.; Fu, X. L.; Tian, G. F.; Wu, D. Z. et al. "Regioselective deposition" method to pattern silver electrodes facilely and efficiently with high resolution: Towards all-solution-processed, high-performance, bottom-contacted, flexible, polymer-based electronics. Adv. Funct. Mater. 2014, 24, 3783–3789.

36

Ferreira, R. X. G.; Xie, E. Y.; McKendry, J. J. D.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A. E.; Gu, E.; Penty, R. V. et al. High Bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026.

37

Islim, M. S.; Ferreira, R. X.; He, X. Y.; Xie, E. Y.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R. V.; White, I. H. et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 2017, 5, A35–A43.

38

Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Xie, E. Y.; McKendry, J. J. D.; Gu, E. D.; Dawson, M. D.; O'Brien, D. C.; Haas, H. LED Based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol. 2016, 34, 3047–3052.

39

Chun, H.; Manousiadis, P.; Rajbhandari, S.; Vithanage, D. A.; Faulkner, G.; Tsonev, D.; McKendry, J. J. D.; Videv, S.; Xie, E. Y.; Gu, E. D. et al. Visible light communication using a blue GaN μ LED and fluorescent polymer color converter. IEEE Photonics Technol. Lett. 2014, 26, 2035–2038.

40

Wu, T. Z.; Sher, C. –W.; Lin, Y.; Lee, C. F.; Liang, S. J.; Lu, Y. J.; Chen, S. W. H.; Guo, W. J.; Kuo, H. C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557.

41

Han, H. V.; Lin, H. Y.; Lin, C. C.; Chong, W. C.; Li, J. R.; Chen, K. J.; Yu, P.; Chen, T. M.; Chen, H. M.; Lau, K. M. et al. Resonant- enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 2015, 23, 32504–32515.

42

McKendry, J. J. D.; Massoubre, D.; Zhang, S. L.; Rae, B. R.; Green, R. P.; Gu, E. D.; Henderson, R. K.; Kelly, A. E.; Dawson, M. D. Visible-light communications using a CMOS-controlled micro- light-emitting-diode array. J. Lightwave Technol. 2012, 30, 61–67.

43

Meng, Q.; Zhang, F. J.; Zang, Y. P.; Huang, D. Z.; Zou, Y.; Liu, J.; Zhao, G. Y.; Wang, Z. R.; Ji, D. Y.; Di, C. A. et al. Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. J. Mater. Chem. C Mater. 2014, 2, 1264–1269.

44

Zhang, W. M.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M. et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 2010, 132, 11437–11439.

45

Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.; King, S.; Zhang, W. M.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.; De Mello, J. et al. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 2011, 44, 6649–6652.

46

Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

47

Liu, J.; Dong, H. L.; Wang, Z. R.; Ji, D. Y.; Cheng, C. L.; Geng, H.; Zhang, H. T.; Zhen, Y. G.; Jiang, L.; Fu, H. B. et al. Thin film field- effect transistors of 2, 6-diphenyl anthracene (DPA). Chem. Commun. 2015, 51, 11777–11779.

48

Li, Y.; Liu, C.; Kumatani, A.; Darmawan, P.; Minari, T.; Tsukagoshi, K. Large plate-like organic crystals from direct spin-coating for solution- processed field-effect transistor arrays with high uniformity. Org. Electron. 2012, 13, 264–272.

49

Liu, J.; Jiang, L. F.; Shi, J.; Li, C. L.; Shi, Y. J.; Tan, J. H.; Li, H. Y.; Jiang, H.; Hu, Y. Y.; Liu, X. F. et al. Relieving the photosensitivity of organic field-effect transistors. Adv. Mater. 2020, 32, 1906122.

50

Chen, C. D.; Chen, Z. H.; Xu, K. J.; Zheng, J. W.; Ou, H.; Wang, Z. G.; Chen, H. J.; Liu, X. Y.; Wu, Q.; Chan, P. K. L. et al. Thin–film transistors with the fringe effect and the correction factor for mobility extraction. IEEE Electron Device Lett. 2019, 40, 897–900.

File
12274_2021_3563_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 March 2021
Revised: 25 April 2021
Accepted: 01 May 2021
Published: 14 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Nos. 2017YFA0204704 and 2016YFB0401100), the National Natural Science Foundation of China (Nos. 21805284 and 21873108), the Chinese Academy of Sciences (Hundred Talents Plan), the China Postdoctoral Science Foundation funded project (No. 2019M660807), and the Strategic Priority Research Program (No. XDB30000000).

Return