Journal Home > Volume 14 , Issue 10

As more than 60% of worldwide consumed energy is unused and becomes waste heat every year, high-efficiency waste heat to power technologies are highly demanded for the conversion of wasted heat to electricity. Thermoelectrics which can convert the wasted heat directly into electricity represent a promising approach for energy recovery. Thermoelectric technology has existed for several decades, but its usage has been limited due to low efficiencies. Recent advances in nanotechnology have enabled the improving of thermoelectric properties which open up the thermoelectrics' feasibility in industry. In this paper, we present an overview of recent progress in increasing the porosity of thermoelectric materials from atomic scale to microscale, leading to the enhancement of figure of merit.


menu
Abstract
Full text
Outline
About this article

Constructing of highly porous thermoelectric structures with improved thermoelectric performance

Show Author's information Peilei HeYue Wu( )
Department of Chemical and Biological Engineering,Iowa State University,Ames, Iowa,50011,USA;

Abstract

As more than 60% of worldwide consumed energy is unused and becomes waste heat every year, high-efficiency waste heat to power technologies are highly demanded for the conversion of wasted heat to electricity. Thermoelectrics which can convert the wasted heat directly into electricity represent a promising approach for energy recovery. Thermoelectric technology has existed for several decades, but its usage has been limited due to low efficiencies. Recent advances in nanotechnology have enabled the improving of thermoelectric properties which open up the thermoelectrics' feasibility in industry. In this paper, we present an overview of recent progress in increasing the porosity of thermoelectric materials from atomic scale to microscale, leading to the enhancement of figure of merit.

Keywords: thermal conductivity, semiconductors, thermoelectrics, porous structures

References(39)

1

Xu, B.; Feng, T. L.; Li, Z.; Zheng, W.; Wu, Y. Large-scale, solution-synthesized nanostructured composites for thermoelectric applications. Adv. Mater. 2018, 30, 1801904.

2

Tan, G. J.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123-12149.

3

Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. , Int. Ed. 2009, 48, 8616-8639.

4

Shi, X. -L.; Zou, J.; Chen, Z. -G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399-7515.

5

Zheng, X. F.; Liu, C. X.; Yan, Y. Y.; Wang, Q. A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev. 2014, 32, 486-503.

6

Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 2018, 8, 1701797.

7

Satterthwaite, C. B.; Ure, R. W. Jr. Electrical and thermal properties of Bi2Te3. Phys. Rev. 1957, 108, 1164-1170.

8

Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043-1053.

9

Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640-647.

10

Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466-479.

11

Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970-3980.

12

Ohta, H.; Kim, S.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M. et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 2007, 6, 129-134.

13

Heremans, J. P. The anharmonicity blacksmith. Nat. Phys. 2015, 11, 990-991.

14

Zheng, W.; Xu, B.; Zhou, L.; Zhou, Y. L.; Zheng, H. M.; Sun, C. H.; Shi, E. Z.; Fink, T. D.; Wu, Y. Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. Nano Res. 2017, 10, 1498-1509.

15

Shi, E. Z.; Cui, S.; Kempf, N.; Xing, Q. F.; Chasapis, T.; Zhu, H. Z.; Li, Z.; Bahk, J. H.; Snyder, G. J.; Zhang, Y. L. et al. Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites. Nano Res. 2020, 13, 1339-1346.

16

Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818-821.

17

Niemelä, J. P.; Giri, A.; Hopkins, P. E.; Karppinen, M. Ultra-low thermal conductivity in TiO2: C superlattices. J. Mater. Chem. A 2015, 3, 11527-11532.

18

Yang, J. H.; Yip, H. L.; Jen, A. K. Y. Rational design of advanced thermoelectric materials. Adv. Energy Mater. 2013, 3, 549-565.

19

Xiao, C.; Li, Z.; Li, K.; Huang, P. C.; Xie, Y. Decoupling interrelated parameters for designing high performance thermoelectric materials. Acc. Chem. Res. 2014, 47, 1287-1295.

20

Chae, K.; Kang, S. H.; Choi, S. M.; Kim, D. Y.; Son, Y. W. Enhanced thermoelectric properties in a new silicon crystal Si24 with intrinsic nanoscale porous structure. Nano Lett. 2018, 18, 4748-4754.

21

Ju, H.; Kim, M.; Park, D.; Kim, J. A strategy for low thermal conductivity and enhanced thermoelectric performance in SnSe: Porous SnSe1-xSx nanosheets. Chem. Mater. 2017, 29, 3228-3236.

22

Giulia, P. Thermoelectric materials: The power of pores. Nat. Rev. Mater. 2017, 2, 17006.

23

Jin, R. C.; Chen, G.; Pei, J. PbS/PbSe hollow spheres: Solvothermal synthesis, growth mechanism, and thermoelectric transport property. J. Phys. Chem. C 2012, 116, 16207-16216.

24

Qiao, J. X.; Zhao, Y.; Jin, Q.; Tan, J.; Kang, S. Q.; Qiu, J. H.; Tai, K. P. Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance. ACS Appl. Mater. Interfaces 2019, 11, 38075-38083.

25

Xu, B.; Feng, T. L.; Agne, M. T.; Tan, Q.; Li, Z.; Imasato, K.; Zhou, L.; Bahk, J. H.; Ruan, X. L.; Snyder, G. J. et al. Manipulating band structure through reconstruction of binary metal sulfide for high- performance thermoelectrics in solution-synthesized nanostructured Bi13S18I2. Angew. Chem. , Int. Ed. 2018, 57, 2413-2418.

26

Xu, B.; Feng, T. L.; Li, Z.; Zhou, L.; Pantelides, S. T.; Wu, Y. Creating zipper-like van der Waals gap discontinuity in low-temperature- processed nanostructured PbBi2nTe1+3n: Enhanced phonon scattering and improved thermoelectric performance. Angew. Chem. , Int. Ed. 2018, 57, 10938-10943.

27

Islam, S. M.; Malliakas, C. D.; Sarma, D.; Maloney, D. C.; Stoumpos, C. C.; Kontsevoi, O. Y.; Freeman, A. J.; Kanatzidis, M. G. Direct gap semiconductors Pb2BiS2I3, Sn2BiS2I3, and Sn2BiSI5. Chem. Mater. 2016, 28, 7332-7343.

28

Eggenweiler, U.; Keller, E.; Krämer, V.; Petasch, U.; Oppermann, H. On the crystal structure of Bi11Se12Cl9. Z. Kristallogr. 1999, 214, 264-270.

29

Chen, J.; Sun, Q.; Bao, D. Y.; Liu, T. Y.; Liu, W. D.; Liu, C.; Tang, J.; Zhou, D. L.; Yang, L.; Chen, Z. G. Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se. ACS Appl. Mater. Interfaces 2020, 12, 51523-51529.

30

Xu, B.; Feng, T. L.; Agne, M. T.; Zhou, L.; Ruan, X. L.; Snyder, G. J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem. , Int. Ed. 2017, 56, 3546-3551.

31

Shi, X. L.; Wu, A.; Liu, W. D.; Moshwan, R.; Wang, Y.; Chen, Z. G.; Zou, J. Polycrystalline snse with extraordinary thermoelectric property via nanoporous design. ACS Nano 2018, 12, 11417-11425.

32

Zhao, X. B.; Ji, X. H.; Zhang, Y. H.; Zhu, T. J.; Tu, J. P.; Zhang, X. B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 2005, 86, 062111.

33

Zhang, G. Q.; Fang, H. Y.; Yang, H. R.; Jauregui, L. A.; Chen, Y. P.; Wu, Y. Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 2012, 12, 3627-3633.

34

Xu, B.; Feng, T. L.; Li, Z.; Pantelides, S. T.; Wu, Y. Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 2018, 18, 4034-4039.

35

Xu, B.; Agne, M. T.; Feng, T. L.; Chasapis, T. C.; Ruan, X. L.; Zhou, Y. L.; Zheng, H. M.; Bahk, J. H.; Kanatzidis, M. G.; Snyder, G. J. et al. Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K). Adv. Mater. 2017, 29, 1605140.

36

Pan, Y.; Aydemir, U.; Grovogui, J. A.; Witting, I. T.; Hanus, R.; Xu, Y. B.; Wu, J. S.; Wu, C. F.; Sun, F. H.; Zhuang, H. L. et al. Melt-centrifuged (Bi, Sb)2Te3: Engineering microstructure toward high thermoelectric efficiency. Adv. Mater. 2018, 30, 1802016.

37

Han, G.; Popuri, S. R.; Greer, H. F.; Bos, J. W. G.; Zhou, W. Z.; Knox, A. R.; Montecucco, A.; Siviter, J.; Man, E. A.; Macauley, M. et al. Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factors. Angew. Chem. , Int. Ed. 2016, 55, 6433-6437.

38

Lee, M. H.; Kang, Y. H.; Kim, J.; Lee, Y. K.; Cho, S. Y. Freely shapable and 3D porous carbon nanotube foam using rapid solvent evaporation method for flexible thermoelectric power generators. Adv. Energy Mater. 2019, 9, 1900914.

39

Li, J. H.; Shi, Q. W.; Röhr, J. A.; Wu, H.; Wu, B.; Guo, Y.; Zhang, Q. H.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. Flexible 3D porous MoS2/CNTs architectures with ZT of 0.17 at room temperature for wearable thermoelectric applications. Adv. Funct. Mater. 2020, 30, 2002508.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 January 2021
Revised: 12 April 2021
Accepted: 01 May 2021
Published: 25 May 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021

Acknowledgements

Acknowledgements

The work documented is supported under a research grant from the US Navy, Mr. Peter A. Morrison at the Office of Naval Research (Award Number N000141912518) located in Arlington, Virginia, USA. Y. W. also thanks U.S. National Science Foundation for the support under Award Number 1905037.

Return