Journal Home > Volume 15 , Issue 1

Tumor oxygen spatial heterogeneity is a critical challenge for the photodynamic inhibition of solid tumors. Development of an intelligent nanoagent to initiate optimal therapeutics according to the localized oxygen levels is an effective settlement. Herein, we report an activatable nanoagent (BDP-Oxide nanoparticles (NPs)) to enable the oxygen auto-adaptive photodynamic/photothermal complementary treatment. Upon the nanoagent accumulated in the tumor region, the low extracellular pH could trigger the disassociation of the nanoagent to release the phototheranostic agent, BDP-Oxide, which will subsequently afford the fluorescence imaging-guided photodynamic oxidation after it gets into the outer oxygen-rich tumors. Along with the penetration deepening in the solid tumor, furthermore, BDP-Oxide could be reduced into BDP by the cytochrome P450 (CYP450) enzymes activated in the low oxygen tension regions of inner hypoxic tumors, which will switch on the photothermal and photoacoustic effects. Overall, the BDP-Oxide NPs-enabled photodynamic/photothermal complementary therapy significantly suppressed the solid tumor growth (inhibition rate of 94.8%). This work proposes an intelligent platform to address the oxygen partial pressure for the optimization of cancer phototherapeutics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aza-BODIPY-based phototheranostic nanoagent for tissue oxygen auto-adaptive photodynamic/photothermal complementary therapy

Show Author's information Meijiao Zhao1,2Qin Zeng1,2Xipeng Li1,2Da Xing1,2( )Tao Zhang1,2( )
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal UniversityGuangzhou 510631 China
Guangdong Provincial Key Laboratory of Laser Life Science South China Normal UniversityGuangzhou 510631 China

Abstract

Tumor oxygen spatial heterogeneity is a critical challenge for the photodynamic inhibition of solid tumors. Development of an intelligent nanoagent to initiate optimal therapeutics according to the localized oxygen levels is an effective settlement. Herein, we report an activatable nanoagent (BDP-Oxide nanoparticles (NPs)) to enable the oxygen auto-adaptive photodynamic/photothermal complementary treatment. Upon the nanoagent accumulated in the tumor region, the low extracellular pH could trigger the disassociation of the nanoagent to release the phototheranostic agent, BDP-Oxide, which will subsequently afford the fluorescence imaging-guided photodynamic oxidation after it gets into the outer oxygen-rich tumors. Along with the penetration deepening in the solid tumor, furthermore, BDP-Oxide could be reduced into BDP by the cytochrome P450 (CYP450) enzymes activated in the low oxygen tension regions of inner hypoxic tumors, which will switch on the photothermal and photoacoustic effects. Overall, the BDP-Oxide NPs-enabled photodynamic/photothermal complementary therapy significantly suppressed the solid tumor growth (inhibition rate of 94.8%). This work proposes an intelligent platform to address the oxygen partial pressure for the optimization of cancer phototherapeutics.

Keywords: boron dipyrromethene (BODIPY), complementary therapy, self-adaptive, spatial heterogeneity of oxygen

References(60)

1

Koens, R.; Tabata, Y.; Serrano, J.; Aratake, S.; Yoshino, D.; Kamm, R. D.; Funamoto, K. Microfluidic platform for three-dimensional cell culture under spatiotemporal heterogeneity of oxygen tension. APL Bioengin. 2020, 4, 016106.

2

Axelson, H.; Fredlund, E.; Ovenberger, M.; Landberg, G.; Påhlman, S. Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell. Dev. Biol. 2005, 16, 554-563.

3

Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177-182.

4

Alizadeh, A. A.; Aranda, V.; Bardelli, A.; Blanpain, C.; Bock, C.; Borowski, C.; Caldas, C.; Califano, A.; Doherty, M.; Elsner, M. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 2015, 21, 846-853.

5

Yang, H. O.; Zhang, H. Y.; Yang, Y. C.; Wang, X. Y.; Deng, T.; Liu, R.; Ning, T.; Bai, M.; Li, H. L.; Zhu, K. G. et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics 2020, 10, 8211-8226.

6

Cao, X.; Rao Allu, S.; Jiang, S. D.; Jia, M. Y.; Gunn, J. R.; Yao, C. P.; LaRochelle, E. P.; Shell, J. R.; Bruza, P.; Gladstone, D. J. et al. Tissue pO2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat. Commun. 2020, 11, 573.

7

Sharma, A.; Arambula, J. F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J. L.; Kim, J. S. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 2019, 48, 771-813.

8

Xu, T.; Ma, Y. Y.; Yuan, Q. L.; Hu, H. X.; Hu, X. K.; Qian, Z. Y.; Rolle, J. K.; Gu, Y. Q.; Li, S. W. Enhanced ferroptosis by oxygen- boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 2020, 14, 3414-3425.

9

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657-674.

10

Wang, M. F.; Hou, Z. Y.; Al Kheraif, A. A.; Xing, B. G.; Lin, J. Mini review of TiO2-based multifunctional nanocomposites for near-infrared light-responsive phototherapy. Adv. Healthc. Mater. 2018, 7, 1800351.

11

Yu, W. Y.; Liu, T.; Zhang, M. K.; Wang, Z. X.; Ye, J. J.; Li, C. X.; Liu, W. L.; Li, R. Q.; Feng, J.; Zhang, X. Z. O2 Economizer for inhibiting cell respiration to combat the hypoxia obstacle in tumor treatments. ACS Nano 2019, 13, 1784-1794.

12

Xuan, W. J.; Xia, Y. H.; Li, T.; Wang, L. L.; Liu, Y. L.; Tan, W. H. Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and pH-independent cancer chemodynamic therapy. J. Am. Chem. Soc. 2020, 142, 937-944.

13

Xu, S. T.; Zhu, X. Y.; Zhang, C.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Oxygen and Pt (Ⅱ) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat. Commun. 2018, 9, 2053.

14

Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145-6153.

15

Guo, Z. Q.; Zou, Y. L.; He, H.; Rao, J. M.; Ji, S. S.; Cui, X. N.; Ke, H. T.; Deng, Y. B.; Yang, H.; Chen, C. Y. et al. Bifunctional platinated nanoparticles for photoinduced tumor ablation. Adv. Mater. 2016, 28, 10155-10164.

16

Ren, Y.; Wang, R. R.; Liu, Y.; Guo, H.; Zhou, X.; Yuan, X. B.; Liu, C. Y.; Tian, J. G.; Yin, H. F.; Wang, Y. S. et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014, 35, 2462-2470.

17

Huang, H.; He, L. Z.; Zhou, W. H.; Qu, G. B.; Wang, J. H.; Yang, N.; Gao, J.; Chen, T. F.; Chu, P. K.; Yu, X. F. Stable black phosphorus/ Bi2O3 heterostructures for synergistic cancer radiotherapy. Biomaterials 2018, 171, 12-22.

18

Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Weichselbaum, R.; Lin, W. B. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 2016, 138, 12502-12510.

19

Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541-2550.

20

Guan, Q.; Zhou, L. L.; Li Y. A.; Wang, S. M.; Song C.; Dong Y. B. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano 2019, 13, 13304- 13316.

21

Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070-5077.

22

Sun, Y.; Zhang, Y. F.; Gao, Y.; Wang, P.; He, G.; Blum, N. T.; Lin, J.; Liu, Q. H.; Wang, X. B.; Huang, P. Six birds with one stone: Versatile nanoporphyrin for single-laser-triggered synergistic phototheranostics and robust immune activation. Adv. Mater. 2020, 32, 2004481.

23

Sheng, Z. H.; Hu, D. H.; Zheng, M. B.; Zhao, P. F.; Liu, H. L.; Gao, D. Y.; Gong, P.; Gao, G. H.; Zhang, P. F.; Ma, Y. F. et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 2014, 8, 12310-12322.

24

Li, H.; Wang, P.; Deng, Y. X.; Zeng, M. Y.; Tang, Y.; Zhu, W. H.; Cheng, Y. S. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy- guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials 2017, 139, 30-38.

25

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

26

Guo, R. R.; Peng, H. B.; Tian, Y.; Shen, S.; Yang, W. L. Mitochondria- targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 2016, 12, 4541-4552.

27

Wang, Y.; Luo, S. Y.; Wu, Y. S.; Tang, P.; Liu, J. J.; Liu, Z. Y.; Shen, S. H.; Ren, H. Z.; Wu, D. C. Highly penetrable and on-demand oxygen release with tumor activity composite nanosystem for photothermal/ photodynamic synergetic therapy. ACS Nano 2020, 14, 17046-17062.

28

Wang, Q.; Dai, Y. N.; Xu, J. Z.; Cai, J.; Niu, X. R.; Zhang, L.; Chen, R. F.; Shen, Q. M.; Huang, W.; Fan, Q. L. All-in-one phototheranostics: Single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Fun. Mater. 2019, 29, 1901480.

29

Du, L. H.; Qin, H.; Ma, T.; Zhang, T.; Xing, D. In vivo imaging- guided photothermal/photoacoustic synergistic therapy with bioorthogonal metabolic glycoengineering-activated tumor targeting nanoparticles. ACS Nano 2017, 11, 8930-8943.

30

Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew. Chem. , Int. Ed. 2008, 47, 1184-1201.

31

Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77-88.

32

Qin, Y.; Liu, X.; Jia, P. P.; Xu, L.; Yang, H. B. BODIPY-based macrocycles. Chem. Soc. Rev. 2020, 49, 5678-5703.

33

Knox, H. J.; Hedhli, J.; Kim, T. W.; Khalili, K.; Dobrucki, L. W.; Chan, J. A bioreducible N-Oxide-based probe for photoacoustic imaging of hypoxia. Nat. Commun. 2017, 8, 1794.

34

Luan, X.; Guan, Y. Y.; Liu, H. J.; Lu, Q.; Zhao, M.; Sun, D. X.; Lovell, J. F.; Sun, P.; Chen, H. Z.; Fang, S. A tumor vascular-targeted interlocking trimodal nanosystem that induces and exploits hypoxia. Adv. Sci. 2018, 5, 1800034.

35

Zhang, X. F.; Xiao, Y.; Qi, J.; Qu, J. L.; Kim, B.; Yue, X. L.; Belfield, K. D. Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes. J. Org. Chem. 2013, 78, 9153-9160.

36

Zhao J. Z.; Xu, K. J; Yang W. B.; Wang Z. J.; Zhong, F. F. The triplet excited state of Bodipy: Formation, modulation and application. Chem. Soc. Rev. 2015, 44, 8904-8939.

37

Knox, H. J.; Chan, J. Acoustogenic Probes: A new frontier in photoacoustic imaging. Acc. Chem. Res. 2018, 51, 2897-2905.

38

He, H.; Ji, S. S.; He, Y.; Zhu, A. J.; Zou, Y. L.; Deng, Y. B.; Ke, H. T.; Yang, H.; Zhao, Y. L.; Guo, Z. Q. et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv. Mater. 2017, 29, 1606690.

39

Huang, H. Y.; Yu, B. L.; Zhang, P. Y.; Huang, J. J.; Chen, Y.; Gasser, G.; Ji, L. N.; Chao, H. Highly charged Ruthenium (Ⅱ) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew. Chem. , Int. Ed. 2015, 54, 14049-14052.

40

Xu, Y. J.; Zhao, M. L.; Zou, L.; Wu, L. C.; Xie, M. J.; Yang, T. S.; Liu, S. J.; Huang, W.; Zhao, Q. Highly stable and multifunctional aza-BODIPY-based phototherapeutic agent for anticancer treatment. ACS Appl. Mater. Interfaces 2018, 10, 44324-44335.

41

Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site- specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289-7325.

42

Ma, B. X.; Zhuang, W. H.; Xu, H.; Li, G. C.; Wang, Y. B. Hierarchical Responsive nanoplatform with two-photon aggregation-induced emission imaging for efficient cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 47259-47269.

43

Wang, Z. Y.; Ju, Y. M.; Ali, Z.; Yin, H.; Sheng, F. G.; Lin, J.; Wang, B. D.; Hou, Y. L. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat. Commun. 2019, 10, 4418.

44

Xiao W. J.; Ma T.; Ge, C.; Xia, W. J.; Sun R. B.; Yu X. Y.; Aa, A. Y.; Wang, G. J. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 2015, 36, 259-267.

45

Qian C. G.; Feng, P. J.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Sun, W. J.; Xiao, X. Z.; Hu, X. L.; Bellotti, A.; Shen Q. D. et al. Anaerobe- inspired anticancer nanovesicles. Angew. Chem. , Int. Ed. 2017, 129, 2632-2637.

46

Goel, S.; Cohen, M.; Çömezoglu, S. N.; Perrin, L.; André, F.; Jayabalan, D.; Iacono, L.; Comprelli, A.; Ly, V. T.; Zhang, D. L. et al. The effect of ketoconazole on the pharmacokinetics and pharmacodynamics of ixabepilone: A first in class epothilone B analogue in late-phase clinical development. Clin. Cancer Res. 2008, 14, 2701-2709.

47

Zeng, Q.; Zhang, R. J.; Zhang, T.; Xing, D. H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy. Biomaterials 2019, 207, 39-48.

48

Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. . Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

49

Wang, T. T.; Wang, D. G.; Liu, J. P.; Feng, B.; Zhou, F. Y.; Zhang, H. W.; Zhou, L.; Yin, Q.; Zhang, Z. W.; Cao, Z. L. et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 2017, 17, 5429-5436.

50

Ni, J.; Wang, X.; Stojanovic, A.; Zhang, Q.; Wincher, M.; Bühler, L.; Arnold, A.; Correia, M. P.; Winkler, M.; Koch, P. S. et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity 2020, 52, 1075-1087. e8.

51

Zhao, X.; Yang, C. X.; Chen, L. G.; Yan, X. P. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat. Commun. 2017, 8, 14998.

52

Zheng, J. D.; Zeng, Q.; Zhang, R. J.; Xing, D.; Zhang, T. Dynamic-reversible photoacoustic probe for continuous ratiometric sensing and imaging of redox status in vivo. J. Am. Chem. Soc. 2019, 141, 19226-19230.

53

Zhang, G. C.; Liu, J.; Deng, Y.; Dong, L.; Zhu, C. F.; Zhu, J. M.; Weng, S. Q.; Li, Y. Bismuth-based mesoporous nanoball carrying sorafenib for computed tomography imaging and synergetic chemoradiotherapy of hepatocellular carcinoma. Adv. Healthc. Mater. 2020, 9, e2000650.

54

Tan, X.; Luo, S. L.; Long, L.; Wang, Y.; Wang, D. C.; Fang, S. T.; Ouyang, Q.; Su, Y. P.; Cheng, T. M.; Shi, C. M. Structure-guided design and synthesis of a mitochondria-targeting near-infrared fluorophore with multimodal therapeutic activities. Adv. Mater. 2017, 29, 1704196.

55

Wang, K. W.; Tu, Y. L.; Yao, W.; Zong, Q. Y.; Jiang, X. Q.; Yuan, Y. Y. Size-switchable nanoparticles with self-destructive and tumor penetration characteristics for site-specific phototherapy of cancer. ACS Appl. Mater. Interfaces 2020, 12, 6933-6943.

56

Huang, J. C.; He, B. Z.; Zhang, Z. J.; Li, Y. M.; Kang, M. M.; Wang, Y. W.; Li, K.; Wang, D.; Tang, B. Z. Aggregation-induced emission luminogens married to 2D black phosphorus nanosheets for highly efficient multimodal theranostics. Adv. Mater. 2020, 32, 2003382.

57

Cheng, Q.; Li, Z. H.; Sun, Y. X.; Zhang, X. Z. Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors. NPG Asia Mater. 2019, 11, 63.

58

Yang Z. L.; Tian, W.; Wang, Q.; Zhao, Y.; Zhang, Y. L.; Tian, Y.; Tang, Y. X.; Wang, S. J.; Liu, Y.; Ni, Q. Q. et al. Oxygen-evolving mesoporous organosilica coated Prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv. Sci. 2018, 5, 1700847.

59

Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.

60

Krzykawska-Serda, M.; Dąbrowski, J. M.; Arnaut, L. G.; Szczygieł, M.; Urbańska, K.; Stochel, G.; Elas, M. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy. Free Radic Biol Med. 2014, 73, 239-251.

File
12274_2021_3552_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2021
Revised: 27 April 2021
Accepted: 30 April 2021
Published: 16 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21771065), Guangdong Special Support Program (No. 2017TQ04R138), Science and Technology Program of Guangzhou (No. 2019050001), Natural Science Foundation of Guangdong (No. 2019A1515012021), Pearl River Nova Program of Guangzhou (No. 201806010189), and the Major Program of Ningbo Science and Technology Innovation 2025 (No. 2020Z093).

Return