AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (40.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Inverse single-site Fe1(OH)X/Pt(111) model catalyst for preferential oxidation of CO in H2

Chunlei Wang1Heloise Tissot1Markus Soldemo2Junling Lu3Jonas Weissenrieder1( )
Materials and Nano Physics School of Engineering Sciences KTH Royal Institute of TechnologyStockholm SE-100 44 Sweden
Department of Engineering and Physics Karlstad UniversityKarlstad SE-651 88 Sweden
Department of Chemical Physics Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of ChinaHefei 230026 China
Show Author Information

Graphical Abstract

Abstract

Inverse oxide/metal model systems are frequently used to investigate catalytic structure-function relationships at an atomic level. By means of a novel atomic layer deposition process, growth of single-site Fe1Ox on a Pt(111) single crystal surface was achieved, as confirmed by scanning tunneling microscopy (STM). The redox properties of the catalyst were characterized by synchrotron radiation based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). After calcination treatment at 373 K in 1 mbar O2, the chemical state of the catalyst was determined as Fe3+. Reduction in 1 mbar H2 at 373 K demonstrates a facile reduction to Fe2+ and complete hydroxylation at significantly lower temperatures than what has been reported for iron oxide nanoparticles. At reaction conditions relevant for preferential oxidation of CO in H2 (PROX), the catalyst exhibits a Fe3+ state (ferric hydroxide) at 298 K while re-oxidation of iron oxide clusters does not occur under the same condition. CO oxidation proceeds on the single-site Fe1(OH)3 through a mechanism including the loss of hydroxyl groups in the temperature range of 373 to 473 K, but no reaction is observed on iron oxide clusters. The results highlight the high flexibility of the single iron atom catalyst in switching oxidation states, not observed for iron oxide nanoparticles under similar reaction conditions, which may indicate a higher intrinsic activity of such single interfacial sites than the conventional metal-oxide interfaces. In summary, our findings of the redox properties on inverse single-site iron oxide model catalyst may provide new insights into applied Fe-Pt catalysis.

Electronic Supplementary Material

Download File(s)
12274_2021_3551_MOESM1_ESM.pdf (2.1 MB)

References

1

Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692-1701.

2

Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 2004, 37, 27-36.

3

Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736-739.

4

Wang, C. L.; Wang, H. W.; Yao, Q.; Yan, H.; Li, J. J.; Lu, J. L. Precisely applying TiO2 overcoat on supported Au catalysts using atomic layer deposition for understanding the reaction mechanism and improved activity in CO oxidation. J. Phys. Chem. C 2016, 120, 478-486.

5

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495-499.

6

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546-550.

7

Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R. et al. Importance of the metal-oxide interface in catalysis: In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. , Int. Ed. 2013, 52, 5101-5105.

8

Freund, H. J.; Pacchioni, G. Oxide ultra-thin films on metals: New materials for the design of supported metal catalysts. Chem. Soc. Rev. 2008, 37, 2224-2242.

9

Pan, Q. S.; Weng, X. F.; Chen, M. S.; Giordano, L.; Pacchioni, G.; Noguera, C.; Goniakowski, J.; Shaikhutdinov, S.; Freund, H. J. Enhanced CO oxidation on the oxide/metal interface: From ultra- high vacuum to near-atmospheric pressures. ChemCatChem 2015, 7, 2620-2627.

10

Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.; Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem. , Int. Ed. 2012, 124, 2974-2978.

11

Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

12

Maeda, Y.; Iizuka, Y.; Kohyama, M. Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 2013, 135, 906-909.

13

Pan, Q.; Li, L.; Shaikhutdinov, S.; Fujimori, Y.; Hollerer, M.; Sterrer, M.; Freund, H. J. Model systems in heterogeneous catalysis: Towards the design and understanding of structure and electronic properties. Faraday Discuss. 2018, 208, 307-323.

14

Trotochaud, L.; Head, A. R.; Pletincx, S.; Karslıoğlu, O.; Yu, Y.; Waldner, A.; Kyhl, L.; Hauffman, T.; Terryn, H.; Eichhorn, B. et al. Water adsorption and dissociation on polycrystalline copper oxides: Effects of environmental contamination and experimental protocol. J. Phys. Chem. B 2018, 122, 1000-1008.

15

Freund, H. J. The surface science of catalysis and more, using ultrathin oxide films as templates: a perspective. J. Am. Chem. Soc. 2016, 138, 8985-8996.

16

Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R. Q.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J. S.; Sykes, E. C. H. An atomic-scale view of single-site Pt catalysis for low- temperature CO oxidation. Nat. Catal. 2018, 1, 192.

17

Dou, J.; Sun, Z. C.; Opalade, A. A.; Wang, N.; Fu, W. S.; Tao, F. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 2017, 46, 2001-2027.

18

Sauer, J.; Freund, H. J. Models in catalysis. Catal. Lett. 2015, 145, 109-125.

19

Leisenberger, F. P.; Surnev, S.; Koller, G.; Ramsey, M. G.; Netzer, F. P. Probing the metal sites of a vanadium oxide-Pd(111) 'inverse catalyst': Adsorption of CO. Surf. Sci. 2000, 444, 211-220.

20

Schoiswohl, J.; Surnev, S.; Netzer, F. P. Reactions on inverse model catalyst surfaces: Atomic views by STM. Top. Catal. 2005, 36, 91-105.

21

Senanayake, S. D.; Stacchiola, D.; Rodriguez, J. A. Unique properties of ceria nanoparticles supported on metals: Novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc. Chem. Res. 2013, 46, 1702-1711.

22

Fujitani, T.; Nakamura, I. Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew. Chem. , Int. Ed. 2011, 50, 10144-10147.

23

Zhang, J.; Medlin, J. W. Catalyst design using an inverse strategy: From mechanistic studies on inverted model catalysts to applications of oxide-coated metal nanoparticles. Surf. Sci. Rep. 2018, 73, 117-152.

24

Kudernatsch, W.; Peng, G. W.; Zeuthen, H.; Bai, Y. H.; Merte, L. R.; Lammich, L.; Besenbacher, F.; Mavrikakis, M.; Wendt, S. Direct visualization of catalytically active sites at the FeO-Pt(111) interface. ACS Nano 2015, 9, 7804-7814.

25

Liu, Y.; Yang, F.; Zhang, Y.; Xiao, J. P.; Yu, L.; Liu, Q. F.; Ning, Y. X.; Zhou, Z. W.; Chen, H.; Huang, W. G. et al. Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nat. Commun. 2017, 8, 14459.

26

Sun, Y. N.; Giordano, L.; Goniakowski, J.; Lewandowski, M.; Qin, Z. H.; Noguera, C.; Shaikhutdinov, S.; Pacchioni, G.; Freund, H. J. The interplay between structure and CO oxidation catalysis on metal- supported ultrathin oxide films. Angew. Chem. , Int. Ed. 2010, 49, 4418-4421.

27

Ritter, M.; Ranke, W.; Weiss, W. Growth and structure of ultrathin FeO films on Pt(111) studied by STM and LEED. Phys. Rev. B 1998, 57, 7240.

28

Cao, L.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631.

29

Lu, J. L.; Elam, J. W.; Stair, P. C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 2013, 46, 1806-1815.

30

Braun, K. F.; Iancu, V.; Pertaya, N.; Rieder, K. H.; Hla, S. W. Decompositional incommensurate growth of ferrocene molecules on a Au(111) surface. Phys. Rev. Lett. 2006, 96, 246102.

31

Dunitz, J.; Orgel, L.; Rich, A. The crystal structure of ferrocene. Acta Cryst. 1956, 9, 373-375.

32

Paul, R.; Reifenberger, R. G.; Fisher, T. S.; Zemlyanov, D. Y. Atomic layer deposition of FeO on Pt(111) by ferrocene adsorption and oxidation. Chem. Mater. 2015, 27, 5915-5924.

33

Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.; Kung, H. H.; Stair, P. C. Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205-1208.

34

Chen, H.; Liu, Y.; Yang, F.; Wei, M. M.; Zhao, X. F.; Ning, Y. X.; Liu, Q. F.; Zhang, Y.; Fu, Q.; Bao, X. H. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. J. Phys. Chem. C 2017, 121, 10398-10405.

35

Shaikhutdinov, S.; Ritter, M.; Weiss, W. Hexagonal heterolayers on a square lattice: A combined STM and LEED study of FeO(111) on Pt(100). Phys. Rev. B 2000, 62, 7535.

36

Merte, L. R.; Shipilin, M.; Ataran, S.; Blomberg, S.; Zhang, C.; Mikkelsen, A.; Gustafson, J.; Lundgren, E. Growth of ultrathin iron oxide films on Ag(100). J. Phys. Chem. C 2015, 119, 2572-2582.

37

Wang, W.; Zhang, H.; Wang, W. H.; Zhao, A. D.; Wang, B.; Hou, J. G. Observation of water dissociation on nanometer-sized FeO islands grown on Pt(1 1 1). Chem. Phys. Lett. 2010, 500, 76-81.

38

Zhou, X.; Shen, Q.; Yuan, K. D.; Yang, W. S.; Chen, Q. W.; Geng, Z. H.; Zhang, J. L.; Shao, X.; Chen, W.; Xu, G. Q. et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 2018, 140, 554-557.

39

Gumbsch, A.; Barcaro, G.; Ramsey, M. G.; Surnev, S.; Fortunelli, A.; Netzer, F. P. Kondo effect of cobalt adatoms on nanostructured Cu-O surfaces: Scanning tunneling spectroscopy experiments and first- principles calculations. Phys. Rev. B 2010, 81, 165420.

40

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141-1144.

41

Knudsen, J.; Andersen, J. N.; Schnadt, J. A versatile instrument for ambient pressure X-ray photoelectron spectroscopy: The Lund cell approach. Surf. Sci. 2016, 646, 160-169.

42

Björneholm, O.; Nilsson, A.; Tillborg, H.; Bennich, P.; Sandell, A.; Hernnäs, B.; Puglia, C.; Mårtensson, N. Overlayer structure from adsorbate and substrate core level binding energy shifts: CO, CCH3 and O on Pt(111). Surf. Sci. 1994, 315, L983-L989.

43

Ringleb, F.; Fujimori, Y.; Wang, H. F.; Ariga, H.; Carrasco, E.; Sterrer, M.; Freund, H. J.; Giordano, L.; Pacchioni, G.; Goniakowski, J. Interaction of water with FeO(111)/Pt(111): environmental effects and influence of oxygen. J. Phys. Chem. C 2011, 115, 19328-19335.

44

Wei, M. M.; Fu, Q.; Dong, A. Y.; Wang, Z. J.; Bao, X. H. Coverage and substrate effects on the structural change of FeOx nanostructures supported on Pt. Top. Catal. 2014, 57, 890-898.

45

Kaya, S.; Ogasawara, H.; Nilsson, A. Determination of the surface electronic structure of Fe3O4(1 1 1) by soft X-ray spectroscopy. Catal. Today. 2015, 240, 184-189.

46

Graat, P. C. J.; Somers, M. A. J. Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl. Surf. Sci. 1996, 100-101, 36-40.

47

Gland, J. L.; Fisher, G. B.; Kollin, E. B. The hydrogen-oxygen reaction over the Pt(111) surface: Transient titration of adsorbed oxygen with hydrogen. J. Catal. 1982, 77, 263-278.

48

Fisher, G. B.; Sexton, B. A. Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys. Rev. Lett. 1980, 44, 683.

49

Calderón, S. K.; Grabau, M.; Óvári, L.; Kress, B.; Steinrück, H. P.; Papp, C. CO oxidation on Pt(111) at near ambient pressures. J. Chem. Phys. 2016, 144, 044706.

50

Descostes, M.; Mercier, F.; Thromat, N.; Beaucaire, C.; Gautier- Soyer, M. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl. Surf. Sci. 2000, 165, 288-302.

51

Schnadt, J.; Knudsen, J.; Andersen, J. N.; Siegbahn, H.; Pietzsch, A.; Hennies, F.; Johansson, N.; Mårtensson, N.; Öhrwall, G.; Bahr, S. et al. The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J. Synchrotron Rad. 2012, 19, 701-704.

52

Fu, Q.; Yao, Y. X.; Guo, X. G.; Wei, M. M.; Ning, Y. X.; Liu, H. Y.; Yang, F.; Liu, Z.; Bao, X. H. Reversible structural transformation of FeOx nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis. Phys. Chem. Chem. Phys. 2013, 15, 14708-14714.

Nano Research
Pages 709-715
Cite this article:
Wang C, Tissot H, Soldemo M, et al. Inverse single-site Fe1(OH)X/Pt(111) model catalyst for preferential oxidation of CO in H2. Nano Research, 2022, 15(1): 709-715. https://doi.org/10.1007/s12274-021-3551-4
Topics:

949

Views

59

Downloads

13

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 03 February 2021
Revised: 17 April 2021
Accepted: 28 April 2021
Published: 22 June 2021
© The Author(s) 2021

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return