Journal Home > Volume 15 , Issue 1

In single molecule study, surface-enhanced Raman scattering (SERS) has the advantage of specifically providing structural information of the molecules targeted. The main challenge in single molecule SERS is developing reusable plasmonic substrates that ensures single molecule sensitivity and acquires intrinsic information of molecules. Here, we proposed a strategy to utilize single- walled carbon nanotubes (SWNTs) to construct SERS substrates. Employing ultrasonic spray pyrolysis, we prepared in situ polyhedral gold nanocrystals closely spaced and attached to nanotubes, ensuring valid hot spots formed along the tube-walls. With such SERS substrates, we proved the single molecule detection by the statistical analysis based on the natural abundance of isotopes. Since SWNTs provide non-chemical bonding adsorption sites, our SERS substrates are easily reusable and have a unique advantage of preserving the intrinsic property of the molecules detected. Using SWNTs to build SERS substrates may become a powerful general strategy in various static and dynamic studies of single molecules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-walled carbon nanotube based SERS substrate with single molecule sensitivity

Show Author's information Chenmaya XiaDaqi ZhangHenan LiSheng LiHaoming LiuLi DingXiyan LiuMin LyuRuoming LiJuan Yang( )Yan Li( )
Beijing National Laboratory for Molecular Sciences Key Laboratory for the Physics and Chemistry of Nanodevices State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking UniversityBeijing 100871 China

Abstract

In single molecule study, surface-enhanced Raman scattering (SERS) has the advantage of specifically providing structural information of the molecules targeted. The main challenge in single molecule SERS is developing reusable plasmonic substrates that ensures single molecule sensitivity and acquires intrinsic information of molecules. Here, we proposed a strategy to utilize single- walled carbon nanotubes (SWNTs) to construct SERS substrates. Employing ultrasonic spray pyrolysis, we prepared in situ polyhedral gold nanocrystals closely spaced and attached to nanotubes, ensuring valid hot spots formed along the tube-walls. With such SERS substrates, we proved the single molecule detection by the statistical analysis based on the natural abundance of isotopes. Since SWNTs provide non-chemical bonding adsorption sites, our SERS substrates are easily reusable and have a unique advantage of preserving the intrinsic property of the molecules detected. Using SWNTs to build SERS substrates may become a powerful general strategy in various static and dynamic studies of single molecules.

Keywords: gold, surface-enhanced Raman scattering, single-walled carbon nanotubes, single molecule studies

References(76)

1

Betzig, E.; Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 1993, 262, 1422-1425.

2

Gimzewski, J. K.; Joachim, C. Nanoscale science of single molecules using local probes. Science 1999, 283, 1683-1688.

3

Ambrose, W. P.; Goodwin, P. M.; Jett, J. H.; Van Orden, A.; Werner, J. H.; Keller, R. A. Single molecule fluorescence spectroscopy at ambient temperature. Chem. Rev. 1999, 99, 2929-2956.

4

Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 2009, 3, 654-657.

5

Kim, Z. H. Single-molecule surface-enhanced Raman scattering: Current status and future perspective. Front. Phys. 2014, 9, 25-30.

6

Zhan, C.; Wang, Z. Y.; Zhang, X. G.; Chen, X. J.; Huang, Y. F.; Hu, S.; Li, J. F.; Wu, D. Y.; Moskovits, M.; Tian, Z. Q. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon- excited electrons and holes. J. Am. Chem. Soc. 2019, 141, 8053- 8057.

7

Neuman, K. C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Meth. 2008, 5, 491-505.

8

Celedon, A.; Nodelman, I. M.; Wildt, B.; Dewan, R.; Searson, P.; Wirtz, D.; Bowman, G. D.; Sun, S. X. Magnetic tweezers measurement of single molecule torque. Nano Lett. 2009, 9, 1720-1725.

9

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667-1670.

10

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.

11

Park, W. H.; Kim, Z. H. Charge transfer enhancement in the SERS of a single molecule. Nano Lett. 2010, 10, 4040-4048.

12

Zhang, Y.; Zhen, Y. R.; Neumann, O.; Day, J. K.; Nordlander, P.; Halas, N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424.

13

Cortés, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezza, R. C. Strong correlation between molecular configurations and charge-transfer processes probed at the single-molecule level by surface-enhanced raman scattering. J. Am. Chem. Soc. 2013, 135, 2809-2815.

14

Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P. Single-molecule chemistry with surface- and tip-enhanced raman spectroscopy. Chem. Rev. 2017, 117, 7583-7613.

15

Tran, V.; Thiel, C.; Svejda, J. T.; Jalali, M.; Walkenfort, B.; Erni, D.; Schlücker, S. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/ Au satellite particles: Single-particle experiments and computer simulations. Nanoscale 2018, 10, 21721-21731.

16

Nikoobakht, B.; Wang, J. P.; El-Sayed, M. A. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition. Chem. Phys. Lett. 2002, 366, 17-23.

17

Hu, S.; Liu, B. J.; Feng, J. M.; Zong, C.; Lin, K. Q.; Wang, X.; Wu, D. Y.; Ren, B. Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 2018, 140, 13680-13686.

18

Xu, M.; Tu, G. P.; Ji, M. W.; Wan, X. D.; Liu, J. J.; Liu, J.; Rong, H. P.; Yang, Y. L.; Wang, C.; Zhang, J. T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi- dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019, 12, 1375-1379.

19

Liu, Y. S.; Luo, F. Large-scale highly ordered periodic Au nano- discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788-2795.

20

Abalde-Cela, S.; Ho, S.; Rodríguez-González, B.; Correa-Duarte, M. A.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Kotov, N. A. Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. Angew. Chem. , Int. Ed. 2009, 48, 5326-5329.

21

Xie, Y. F.; Wang, X.; Han, X. X.; Xue, X. X.; Ji, W.; Qi, Z. H.; Liu, J. Q.; Zhao, B.; Ozaki, Y. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 2010, 135, 1389-1394.

22

dos Santos, D. P.; Temperini, M. L. A.; Brolo, A. G. Mapping the energy distribution of SERRS hot spots from anti-stokes to stokes intensity ratios. J. Am. Chem. Soc. 2012, 134, 13492-13500.

23

Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138-144.

24

Shao, Q.; Que, R. H.; Shao, M. W.; Cheng, L.; Lee, S. T. Copper nanoparticles grafted on a silicon wafer and their excellent surface- enhanced Raman scattering. Adv. Funct. Mater. 2012, 22, 2067-2070.

25

Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p'-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677-10682.

26

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267- 297.

27

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042-4076.

28

Lin, W. C.; Liao, L. S.; Chen, Y. H.; Chang, H. C.; Tsai, D. P.; Chiang, H. P. Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 2011, 6, 201-206.

29

Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzán, L. M. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26, 14943-14950.

30

Marshall, A. R. L.; Stokes, J.; Viscomi, F. N.; Proctor, J. E.; Gierschner, J.; Bouillard, J. S. G.; Adawi, A. M. Determining molecular orientation via single molecule SERS in a plasmonic nano-gap. Nanoscale 2017, 9, 17415-17421.

31

Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface- enhanced raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460-10463.

32

Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452-460.

33

Zhu, C. H.; Meng, G. W.; Huang, Q.; Wang, X. J.; Qian, Y. W.; Hu, X. Y.; Tang, H. B.; Wu, N. Q. ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Res. 2015, 8, 957-966.

34

Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338-3346.

35

Weber, M. L.; Willets, K. A. Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2011, 2, 1766-1770.

36

Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448.

37

Kumar, J.; Thomas, K. G. Surface-enhanced raman spectroscopy: Investigations at the nanorod edges and dimer junctions. J. Phys. Chem. Lett. 2011, 2, 610-615.

38

Fan, Q. K.; Liu, T. Z.; Li, H. S.; Zhang, S. M.; Liu, K.; Gao, C. B. Gold/oxide heterostructured nanoparticles for enhanced SERS sensitivity and reproducibility. Rare Met. 2020, 39, 834-840.

39

Rodríguez-Lorenzo, L.; Álvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; de Abajo, F. J. G. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616-4618.

40

Huang, Z. L.; Meng, G. W.; Hu, X. Y.; Pan, Q. J.; Huo, D. X.; Zhou, H. J.; Ke, Y.; Wu, N. Q. Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering. Nano Res. 2019, 12, 449-455.

41

Shiohara, A.; Novikov, S. M.; Solís, D. M.; Taboada, J. M.; Obelleiro, F.; Liz-Marzán, L. M. Plasmon modes and hot spots in gold nanostar- satellite clusters. J. Phys. Chem. C 2015, 119, 10836-10843.

42

Taylor, R. W.; Coulston, R. J.; Biedermann, F.; Mahajan, S.; Baumberg, J. J.; Scherman, O. A. In situ SERS monitoring of photochemistry within a nanojunction reactor. Nano Lett. 2013, 13, 5985-5990.

43

Zhan, P. F.; Wen, T.; Wang, Z. G.; He, Y. B.; Shi, J.; Wang, T.; Liu, X. F.; Lu, G. W.; Ding, B. Q. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced raman scattering. Angew. Chem. , Int. Ed. 2018, 57, 2846-2850.

44

Chen, H. Y.; Lin, M. H.; Wang, C. Y.; Chang, Y. M.; Gwo, S. Large- scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 2015, 137, 13698-13705.

45

Choi, H. K.; Park, W. H.; Park, C. G.; Shin, H. H.; Lee, K. S.; Kim, Z. H. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 2016, 138, 4673-4684.

46

Kim, N. H.; Hwang, W.; Baek, K.; Rohman, M. R.; Kim, J.; Kim, H. W.; Mun, J.; Lee, S. Y.; Yun, G.; Murray, J. et al. Smart SERS hot spots: Single molecules can Be positioned in a plasmonic nanojunction using host-guest chemistry. J. Am. Chem. Soc. 2018, 140, 4705-4711.

47

Zhang, Z. L.; Deckert-Gaudig, T.; Singh, P.; Deckert, V. Single molecule level plasmonic catalysis—A dilution study of p-nitrothiophenol on gold dimers. Chem. Commun. 2015, 51, 3069-3072.

48

Jung, D.; Jeon, K.; Yeo, J.; Hussain, S.; Pang, Y. Multifaceted adsorption of α-cyano-4-hydroxycinnamic acid on silver colloidal and island surfaces. Appl. Surf. Sci. 2017, 425, 63-68.

49

Lu, G.; Shrestha, B.; Haes, A. J. Importance of tilt angles of adsorbed aromatic molecules on nanoparticle rattle SERS substrates. J. Phys. Chem. C 2016, 120, 20759-20767.

50

Hackler, R. A.; McAnally, M. O.; Schatz, G. C.; Stair, P. C.; Van Duyne, R. P. Identification of dimeric methylalumina surface species during atomic layer deposition using Operando surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 2456-2463.

51

Hu, J.; Tanabe, M.; Sato, J.; Uosaki, K.; Ikeda, K. Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS. J. Am. Chem. Soc. 2014, 136, 10299-10307.

52

Carnegie, C.; Griffiths, J.; de Nijs, B.; Readman, C.; Chikkaraddy, R.; Deacon, W. M.; Zhang, Y.; Szabó, I.; Rosta, E.; Aizpurua, J. et al. Room-temperature optical picocavities below 1 nm3 accessing single- atom geometries. J. Phys. Chem. Lett. 2018, 9, 7146-7151.

53

Beqa, L.; Fan, Z.; Singh, A. K.; Senapati, D.; Ray, P. C. Gold nano- popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl. Mater. Interfaces 2011, 3, 3316-3324.

54

Chen, Y. C.; Young, R. J.; Macpherson, J. V.; Wilson, N. R. Single- walled carbon nanotube networks decorated with silver nanoparticles: A novel graded SERS substrate. J. Phys. Chem. C 2007, 111, 16167- 16173.

55

Chu, H. B.; Wang, J. Y.; Ding, L.; Yuan, D. N.; Zhang, Y.; Liu, J.; Li, Y. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2009, 131, 14310-14316.

56

Wang, X. J.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J. Am. Chem. Soc. 2012, 134, 7414-7422.

57

Chu, H. B.; Cui, R. L.; Wang, J. Y.; Yang, J.; Li, Y. Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon 2011, 49, 1182-1188.

58

Lyu, M.; Meany, B.; Yang, J.; Li, Y.; Zheng, M. Toward complete resolution of DNA/carbon nanotube hybrids by aqueous two-phase systems. J. Am. Chem. Soc. 2019, 141, 20177-20186.

59

Yanagi, K.; Iakoubovskii, K.; Matsui, H.; Matsuzaki, H.; Okamoto, H.; Miyata, Y.; Maniwa, Y.; Kazaoui, S.; Minami, N.; Kataura, H. Photosensitive function of encapsulated dye in carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 4992-4997.

60

Nakanishi, R.; Satoh, J.; Katoh, K.; Zhang, H. T.; Breedlove, B. K.; Nishijima, M.; Nakanishi, Y.; Omachi, H.; Shinohara, H.; Yamashita, M. DySc2N@C80 single-molecule magnetic metallofullerene encapsulated in a single-walled carbon nanotube. J. Am. Chem. Soc. 2018, 140, 10955-10959.

61

Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640-646.

62

Ouyang, J. Y.; Ding, J. F.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A. J.; Malenfant, P. R. L. Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment. ACS Nano 2018, 12, 1910-1919.

63

Heeg, S.; Oikonomou, A.; Fernandez-Garcia, R.; Lehmann, C.; Maier, S. A.; Vijayaraghavan, A.; Reich, S. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities. Nano Lett. 2014, 14, 1762-1768.

64

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

65

Cui, R. L.; Zhao, X. L.; Li, R. M.; Liu, Y.; Luo, D.; Yang, F.; Li, Y. Preparation of horizontally aligned single-walled carbon nanotubes with floating catalyst. Sci. China Chem. 2017, 60, 516-520.

66

Zhang, D. Q.; Yang, J.; Li, M. H.; Li, Y. (n, m) assignments of metallic single-walled carbon nanotubes by Raman spectroscopy: The importance of electronic Raman scattering. ACS Nano 2016, 10, 10789-10797.

67

Huang, S. M.; Woodson, M.; Smalley, R.; Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process. Nano Lett. 2004, 4, 1025-1028.

68

Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806-13812.

69

Sun, Y. H.; Liu, K.; Miao, J.; Wang, Z. Y.; Tian, B. Z.; Zhang, L. N.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett. 2010, 10, 1747-1753.

70

Suh, J. S.; Moskovits, M. Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J. Am. Chem. Soc. 1986, 108, 4711-4718.

71

Madzharova, F.; Heiner, Z.; Gühlke, M.; Kneipp, J. Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine, and uracil. J. Phys. Chem. C 2016, 120, 15415-15423.

72

Xiao, G. N.; Man, S. Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305-309.

73

Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2007, 129, 16249-16256.

74

Etchegoin, P. G.; Le Ru, E. C.; Meyer, M. Evidence of natural isotopic distribution from single-molecule SERS. J. Am. Chem. Soc. 2009, 131, 2713-2716.

75

Chen, C.; Li, Y.; Kerman, S.; Neutens, P.; Willems, K.; Cornelissen, S.; Lagae, L.; Stakenborg, T.; Van Dorpe, P. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun. 2018, 9, 1733.

76

Wang, D. X.; Zhu, W. Q.; Best, M. D.; Camden, J. P.; Crozier, K. B. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett. 2013, 13, 2194-2198.

File
12274_2021_3549_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 March 2021
Revised: 24 April 2021
Accepted: 27 April 2021
Published: 10 September 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research is financially supported by the National key R&D Progrom of China (No. 2016YFA0201904), the National Natural Science Foundation of China (Nos. 21873008 and 21631002), Beijing National Laboratory for Molecular Sciences (No. BNLMS- CXTD-202001) and Shenzhen Basic Research Project (No. JCYJ20170817113121505).

Return