AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density

Fang Shen1Zhenglin Wang1Yamei Wang1Guangfu Qian1Miaojing Pan1Lin Luo1Guoning Chen2Hailang Wei2Shibin Yin1( )
College of Chemistry and Chemical Engineering Key Laboratory of New Processing Technology for Nonferrous Metals and Materials State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials Guangxi University Nanning 530004 China
Guangxi Bossco Environmental Protection Technology Co., Ltd 12 Kexing Road Nanning 530007 China
Show Author Information

Graphical Abstract

Abstract

Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeWO4-WO3 heterostructure catalyst growing on nickel foam (FeWO4-WO3/NF) by a combination of hydrothermal and calcination method. It shows good catalytic activity with ultralow potentials for OER (η10 = 1.43 V, η1, 000 = 1.56 V) and HzOR (η10 = −0.034 V, η1, 000 = 0.164 V). Moreover, there is little performance degradation after being tested for 100 h at 1, 000 (OER) and 100 (HzOR) mA·cm−2, indicating good stability. The superior performance could be attributed to the wolframite structure and heterostructure: The former provides a high electrical conductivity to ensure the electronic transfer capability, and the later induces interfacial electron redistribution to enhance the intrinsic activity and stability. The work offers a brand-new way to prepare good performance catalysts for OER and HzOR, especially at large current density.

Electronic Supplementary Material

Download File(s)
12274_2021_3548_MOESM1_ESM.pdf (3 MB)

References

1

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional per­formance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

2

Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

3

Zheng, T. T.; Shang, C. Y.; He, Z. H.; Wang, X. Y.; Cao, C.; Li, H. L.; Si, R.; Pan, B. C.; Zhou, S. M.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem. , Int. Ed. 2019, 58, 14764–14769.

4

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

5

Yu, T. Q.; Xu, Q. L.; Qian, G. F.; Chen, J. L.; Zhang, H.; Luo, L.; Yin, S. B. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustainable Chem. Eng. 2020, 8, 17520–17526.

6

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

7

Zhou, L.; Shao, M. F.; Li, J. B.; Jiang, S.; Wei, M.; Duan, X. Two- dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy 2017, 41, 583–590.

8

Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y. Q.; Li, C. L.; Li, Y. B. Fe-based electrocatalysts for oxygen evolution reaction: Progress and perspectives. ACS Catal. 2020, 10, 4019–4047.

9

Masud, J.; Umapathi, S.; Ashokaan, N.; Nath, M. Iron phosphide nanoparticles as an efficient electrocatalyst for the OER in alkaline solution. J. Mater. Chem. A 2016, 4, 9750–9754.

10

Wei, P. K.; Hao, Z. W.; Yang, Y.; Liu, M. Y.; Zhang, H. J.; Gao, M. R.; Yu, S. H. Unconventional dual-vacancies in nickel diselenide- graphene nanocomposite for high-efficiency oxygen evolution catalysis. Nano Res. 2020, 13, 3292–3298.

11

Qian, G. F.; Yu, G. T.; Lu, J. J.; Luo, L.; Wang, T.; Zhang, C. H.; Ku, R. Q.; Yin, S. B.; Chen, W.; Mu, S. C. Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. J. Mater. Chem. A 2020, 8, 14545–14554.

12

Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536.

13

Liu, G. Q.; Sun, Z. T.; Zhang, X.; Wang, H. J.; Wang, G. Z.; Wu, X. J.; Zhang, H. M.; Zhao, H. J. Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting. J. Mater. Chem. A 2018, 6, 19201–19209.

14

Xu, X. H.; Wang, T.; Dong, L. J.; Lu, W. B.; Miao, X. Y. Energy- efficient hydrogen evolution reactions via hydrazine oxidation over facile synthesis of cobalt tetraoxide electrodes. ACS Sustainable Chem. Eng. 2020, 8, 7973–7980.

15

Feng, G.; Kuang, Y.; Li, Y. J.; Sun, X. M. Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Res. 2015, 8, 3365–3371.

16

Zhao, Y.; Jia, N.; Wu, X. R.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. W.; Chen, Y. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Appl. Catal. B 2020, 270, 118880.

17

Zhang, J.; Wang, G.; Liao, Z. Q.; Zhang, P. P.; Wang, F. X.; Zhuang, X. D.; Zschech, E.; Feng, X. L. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 2017, 40, 27–33.

18

Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3–x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem. , Int. Ed. 2019, 58, 16038–16042.

19
Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl. Catal. B 2012, 111–112, 376–380.
20

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium- based nanomaterials for electrochemical water splitting. Nano Energy 2020, 78, 105270.

21

Shen, F.; Wang, Y. M.; Qian, G. F.; Chen, W.; Jiang, W. J.; Luo, L.; Yin, S. B. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl. Catal. B 2020, 278, 119327.

22

Zheng, D. H.; Jing, Z. X.; Zhao, Q. Y.; Kim, Y.; Li, P.; Xu, H. Z.; Li, Z. F.; Lin, J. J. Efficient Co-doped pyrrhotite Fe0.95S1.05 nanoplates for electrochemical water splitting. Chem. Eng. J. 2020, 402, 125069.

23

Wang, Y. M.; Qian, G. F.; Xu, Q. L.; Zhang, H.; Shen, F.; Luo, L.; Yin, S. B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl. Catal. B 2021, 286, 119881.

24

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

25

Feng, S. Q.; Lu, J. J.; Luo, L.; Qian, G. F.; Chen, J. L.; Abbo, H. S.; Titinchi, S. J. J.; Yin, S. B. Enhancement of oxygen reduction activity and stability via introducing acid-resistant refractory Mo and regulating the near-surface Pt content. J. Energy Chem. 2020, 51, 246–252.

26

Qiu, M. J.; Sun, P.; Shen, L. X.; Wang, K.; Song, S. Q.; Yu, X.; Tan, S. Z.; Zhao, C. X.; Mai, W. J. WO3 nanoflowers with excellent pseudo- capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 2016, 4, 7266–7273.

27

Qian, G. F.; Chen, J. L.; Yu, T. Q.; Luo, L.; Yin, S. B. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 2021, 13, 77.

28

Maslana, K.; Wenelska, K.; Biegun, M.; Mijowska, E. High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions. Appl. Catal. B 2020, 266, 118575.

29

Babar, P.; Lokhande, A.; Karade, V.; Lee, I. J.; Lee, D.; Pawar, S.; Kim, J. H. Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. J. Colloid Interface Sci. 2019, 557, 10–17.

30

Dey, S.; Ricciardo, R. A.; Cuthbert, H. L.; Woodward, P. M. Metal- to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 2014, 53, 4394–4399.

31

Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052.

32

Shao, W.; Xia, Y. H.; Luo, X.; Bai, L. F.; Zhang, J.; Sun, G. A.; Xie, C. M.; Zhang, X. D.; Yan, W. S.; Xie, Y. Structurally distorted wolframite-type CoxFe1-xWO4 solid solution for enhanced oxygen evolution reaction. Nano Energy 2018, 50, 717–722.

33

Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3–xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

34

Zhang, H. J.; Maijenburg, A. W.; Li, X. P.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261.

35

Liang, Z. B.; Zhou, W. Y.; Gao, S.; Zhao, R.; Zhang, H.; Tang, Y. Q.; Cheng, J. Q.; Qiu, T. J.; Zhu, B. J.; Qu, C. et al. Fabrication of hollow CoP/TiOx heterostructures for enhanced oxygen evolution reaction. Small 2020, 16, 1905075.

36

Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

37

Liu, G.; Wang, M. H.; Wu, Y.; Li, N.; Zhao, F.; Zhao, Q.; Li, J. P. 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl. Catal. B 2020, 260, 118199.

38

Sun, Q. Q.; Zhou, M.; Shen, Y. Q.; Wang, L. Y.; Ma, Y.; Li, Y. B.; Bo, X.; Wang, Z. L.; Zhao, C. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electro­catalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 2019, 373, 180–189.

39

Wang, M. J.; Zheng, X. Q.; Song, L. L.; Feng, X.; Liao, Q.; Li, J.; Li, L.; Wei, Z. D. Fe3O4/FeS2 heterostructures enable efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 14145–14151.

40

Chen, Z. J.; Zhong, H. F.; Hu, W. J.; Yin, H.; Cao, G. X.; Wen, H.; Wang, J. J.; Wang, P. Highly dispersed Ni2-xMoxP nanoparticles on oxygen-defect-rich NiMoO4-y nanosheets as an active electrocatalyst for alkaline hydrogen evolution reaction. J. Power Sources 2019, 444, 227311.

41

Wang, H. X.; Wang, C. H.; Cui, X. M.; Qin, L.; Ding, R. M.; Wang, L. C.; Liu, Z.; Zheng, Z. F.; Lv, B. L. Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl. Catal. B 2018, 221, 169–178.

42

Feng, H. P.; Tang, L.; Zeng, G. M.; Yu, J. F.; Deng, Y. C.; Zhou, Y. Y.; Wang, J. J.; Feng, C. Y.; Luo, T.; Shao, B. B. Electron density modulation of Fe1–xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting. Nano Energy 2020, 67, 104174.

43

Chen, Y. X.; Shen, L.; Wang, C. C.; Feng, S. Y.; Zhang, N.; Xiang, S. Y.; Feng, T. L.; Yang, M. X.; Zhang, K.; Yang, B. Utilizing in-situ polymerization of pyrrole to fabricate composited hollow nanospindles for boosting oxygen evolution reaction. Appl. Catal. B 2020, 274, 119112.

44

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/ hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

45

Liu, H. B.; Yang, L.; Qiao, K. W.; Zeng, X. F.; Huang, Y.; Zheng, L. R.; Cao, D. P. A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction. Nano Energy 2020, 76, 105115.

46

Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 11948–11957.

47

Tsai, F. T.; Deng, Y. T.; Pao, C. W.; Chen, J. L.; Lee, J. F.; Lai, K. T.; Liaw, W. F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 2020, 8, 9939–9950.

48

Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B 2020, 272, 118959.

49

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-Nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine- assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

50

Tsai, F. T.; Deng, Y. T.; Pao, C. W.; Chen, J. L.; Lee, J. F.; Lai, K. T.; Liaw, W. F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 2020, 8, 9939-9950.

51

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

52

Liu, H. B.; Yang, L.; Qiao, K. W.; Zeng, X. F.; Huang, Y.; Zheng, L. R.; Cao, D. P. A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction. Nano Energy 2020, 76, 105115.

53

Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 11948-11957.

54

Maslana, K.; Wenelska, K.; Biegun, M.; Mijowska, E. High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions. Appl. Catal., B 2020, 266, 118575.

55

Chen, Y. X.; Shen, L.; Wang, C. C.; Feng, S. Y.; Zhang, N.; Xiang, S. Y.; Feng, T. L.; Yang, M. X.; Zhang, K.; Yang, B. Utilizing in-situ polymerization of pyrrole to fabricate composited hollow nanospindles for boosting oxygen evolution reaction. Appl. Catal., B 2020, 274, 119112.

56

Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal., B 2020, 272, 118959.

57

Sun, Q. Q.; Zhou, M.; Shen, Y. Q.; Wang, L. Y.; Ma, Y.; Li, Y. B.; Bo, X.; Wang, Z. L.; Zhao, C. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 2019, 373, 180-189.

58

Wang, T. J.; Xu, G. R.; Sun, H. Y.; Huang, H.; Li, F. M.; Chen, P.; Chen, Y. Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous nickel phosphide nanotubes on nickel foam. Nanoscale 2020, 12, 11526-11535.

59

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B.; Liu, X.; Zhao, K. N.; Liao, X. B.; Yang, W.; Cheng, Y. B.; Mai, L. Q. Copper-Nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine‐assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

60

Hu, S. N.; Tan, Y.; Feng, C. Q.; Wu, H. M.; Zhang, J. J.; Mei, H. Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. J. Power Sources 2020, 453, 227872.

61

Zhang, C. X.; Liu, H. X.; Liu, Y. F.; Liu, X. J.; Mi, Y. Y.; Guo, R. J.; Sun, J. Q.; Bao, H. H.; He, J.; Qiu, Y.; Ren, J. Q.; Yang, X. J.; Luo, J.; Hu, G. Z. Rh2S3/N-doped carbon hybrids as pH-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods 2020, 4, 2000208.

62

Babar, P.; Lokhande, A.; Karade, V.; Lee, I. J.; Lee, D.; Pawar, S.; Kim, J. H. Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. J. Colloid Interface Sci. 2019, 557, 10-17.

63

Zhang, J. Y.; Wang, H. M.; Tian, Y. F.; Yan, Y.; Xue, Q.; He, T.; Liu, H. F.; Wang, C. D.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem., Int. Ed. 2018, 57, 7649-7653.

64

Pu, Z. H.; Saana Amiinu, I.; Gao, F. L.; Xu, Z. Z.; Zhang, C. T.; Li, W. Q.; Li, G. Q.; Mu, S. C. Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. J. Power Sources 2018, 401, 238-244.

Nano Research
Pages 4356-4361
Cite this article:
Shen F, Wang Z, Wang Y, et al. Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density. Nano Research, 2021, 14(11): 4356-4361. https://doi.org/10.1007/s12274-021-3548-z
Topics:

652

Views

26

Crossref

24

Web of Science

25

Scopus

5

CSCD

Altmetrics

Received: 27 February 2021
Revised: 21 April 2021
Accepted: 27 April 2021
Published: 08 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return