Journal Home > Volume 15 , Issue 6

High-entropy alloys (HEAs) have the potential to be a paradigm-shift for rational catalyst discovery but this new type of alloy requires a completely new approach to predict the surface reactivity. In addition to the ligand effect perturbing the surface–adsorbate bond, the random configuration of elements in the surface will also induce local strain effects due to the varying radii of neighboring atoms. Accurate modelling of HEA surface reactivity requires an estimate of this effect: To what degree is the adsorption of intermediates on these lattice distorted atomic environments affected by local strain? In this study, more than 3,500 density functional theory (DFT) calculated adsorption energies of *OH and *O adsorbed on the HEAs IrPdPtRhRu and AgAuCuPdPt are statistically analyzed with respect to the lattice constants of the alloys and the surfaces of each individual binding site. It is found that the inherent distortion of the lattice structure in HEAs releases the local strain effect on the adsorption energy as the atomic environment surrounding the binding atom(s) settles into a relaxed structure. This is even observed to be true for clusters of atoms of which the sizes deviate significantly from the atomic environment in which they are embedded. This elucidates an important aspect of binding site interaction with the neighboring atoms and thus constitutes a step towards a more accurate theoretical model of estimating the reactivity of HEA surfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lattice distortion releasing local surface strain on high-entropy alloys

Show Author's information Christian M. ClausenJack K. PedersenThomas A. A. BatchelorJan Rossmeisl( )
Department of Chemistry, University of Copenhagen, 2100 København Ø, Denmark

Abstract

High-entropy alloys (HEAs) have the potential to be a paradigm-shift for rational catalyst discovery but this new type of alloy requires a completely new approach to predict the surface reactivity. In addition to the ligand effect perturbing the surface–adsorbate bond, the random configuration of elements in the surface will also induce local strain effects due to the varying radii of neighboring atoms. Accurate modelling of HEA surface reactivity requires an estimate of this effect: To what degree is the adsorption of intermediates on these lattice distorted atomic environments affected by local strain? In this study, more than 3,500 density functional theory (DFT) calculated adsorption energies of *OH and *O adsorbed on the HEAs IrPdPtRhRu and AgAuCuPdPt are statistically analyzed with respect to the lattice constants of the alloys and the surfaces of each individual binding site. It is found that the inherent distortion of the lattice structure in HEAs releases the local strain effect on the adsorption energy as the atomic environment surrounding the binding atom(s) settles into a relaxed structure. This is even observed to be true for clusters of atoms of which the sizes deviate significantly from the atomic environment in which they are embedded. This elucidates an important aspect of binding site interaction with the neighboring atoms and thus constitutes a step towards a more accurate theoretical model of estimating the reactivity of HEA surfaces.

Keywords: oxygen reduction reaction, electrocatalysis, high-entropy alloys, surface reactivity, strain effect, surface strain

References(39)

1

Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

2

Jennings, P. C.; Lysgaard, S.; Hansen, H. A.; Vegge, T. Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 24737–24745.

3

Asano, M.; Kawamura, R.; Sasakawa, R.; Todoroki, N.; Wadayama, T. Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: Surface strains and direct electronic effects induced by alloying elements. ACS Catal. 2016, 6, 5285–5289.

4

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

5

Hoster, H. E.; Alves, O. B.; Koper, M. T. M. Tuning adsorption via strain and vertical ligand effects. ChemPhysChem 2010, 11, 1518–1524.

6

Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

7

Grabow, L.; Xu, Y.; Mavrikakis, M. Lattice strain effects on CO oxidation on Pt (111). Phys. Chem. Chem. Phys. 2006, 8, 3369–3374.

8

Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt (111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485–5491.

9

Wa ng, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

10

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

11

Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

12

Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

13

Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

14

Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem., Int. Ed. 2020, 59, 5844–5850.

15

Hammer, B.; Nørskov, J. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

16

Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

17

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

18

Nilsson, A.; Pettersson, L. G. M.; Hammer, B.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 2005, 100, 111–114.

19

Owen, L. R.; Jones, N. G. Lattice distortions in high-entropy alloys. J. Mater. Res. 2018, 33, 2954–2969.

20

So ng, H. Q.; Tian, F. Y.; Hu, Q. M.; Vitos, L.; Wang, Y. D.; Shen, J.; Chen, N. X. Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 2017, 1, 023404.

21

Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

22
Paul, A. Comments on “Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys” by K. Y. Tsai, M. H. Tsai and J. W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 2017, 135, 153–157.
23
Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Reply to comments on “Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys” by K. Y. Tsai, M. H. Tsai and J. W. Yeh, Acta Materialia 61 (2013) 4887–4897. Scr. Mater. 2017, 135, 158–159.
24
Divinski, S. V.; Pokoev, A. V.; Esakkiraja, N.; Paul, A. A mystery of "Sluggish Diffusion" in high-entropy alloys: The truth or a myth? Diffus. Found. 2018, 17, 69–104.
25

Dąbrowa, J.; Zajusz, M.; Kucza, W.; Cieślak, G.; Berent, K.; Czeppe, T.; Kulik, T.; Danielewski, M. Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloys Compd. 2019, 783, 193–207.

26

Ferrari, A.; Körmann, F. Surface segregation in Cr-Mn-Fe-Co-Ni high entropy alloys. Appl. Surf. Sci. 2020, 533, 147471.

27

Vegard, L. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 1921, 5, 17–26.

28

Okamoto, N. L.; Yuge, K.; Tanaka, K.; Inui, H.; George, E. P. Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 2016, 6, 125008.

29

G uo, W.; Dmowski, W.; Noh, J. Y.; Rack, P.; Liaw, P. K.; Egami, T. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study. Metall. Mater. Trans. A 2013, 44, 1994–1997.

30

Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964.

31

Z ou, Y.; Maiti, S.; Steurer, W.; Spolenak, R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014, 65, 85–97.

32

Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

33
Murty, B. S.; Yeh, J. W.; Ranganathan, S.; Bhattacharjee, P. P. High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, 2019.
34
Belin-Ferré, E. Surface Properties and Engineering of Complex Intermetallics; World Scientific: Singapore, 2010; pp 323–399.
35

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

36

Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment—A Python library for working with atoms. J. Phys.: Condens. Matter 2017, 29, 273002.

37

Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109.

38

Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter 2010, 22, 253202.

39

Alchagirov, A. B.; Perdew, J. P.; Boettger, J. C.; Albers, R. C.; Fiolhais, C. Reply to "Comment on 'Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model'". Phys. Rev. B 2003, 67, 026103.

File
12274_2021_3544_MOESM1_ESM.pdf (598.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2021
Revised: 16 April 2021
Accepted: 26 April 2021
Published: 29 May 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge the support from the Danish Ministry of Higher Education and Science (Structure of Materials in Real Time grant), VILLUM FONDEN (No. 9455) and the Danish National Research Foundation Center for High-Entropy Alloy Catalysis (No. DNRF 149).

Return