Journal Home > Volume 15 , Issue 1

The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life. Prior to the evolution of complex cellular machinery, spontaneous protocell membrane evolution results from the intrinsic physicochemical properties of simple molecules under specific environmental conditions. Here, we report the evolution of the morphology of cell-sized model protocell membranes from giant vesicles to pearling and helical nanostructures, resembling morphologies of eukaryocytes, nostoc, and spirilla. This evolution occurs in a single binary aqueous system composed of an achiral single-chain amphiphile and a biogenic polyamine (spermidine or spermine) upon evaporating water, feeding amphiphiles, or increasing pH in response to various primitive fluctuating conditions. In contrast, nonbiogenic polyamines (triamine, triethylenetetramine, and hexamethyltriethylenetetramine) with slight differences in the number of methylene groups or protonated amine groups do not induce such a kind of evolution. The evolution of the shape transformation strongly relies on the balance between electrostatic attraction and hydrogen bonding, attributed to the odd/even effect of polyamines in the assembly. Strikingly, both pearling and helical structures emerge from multilamellar vesicles undergoing different processes, where the helix shows stronger permeability and encapsulation capability due to its multicompartmentalized structure. Thus, subtle adjustment of weak intramolecular interactions not only yields significant changes in the morphological evolution of protocell membranes but also brings new insights into the natural inevitability of biogenic small molecules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Pearling and helical nanostructures of model protocell membranes

Show Author's information Zhidi Chen1,2Yaxun Fan1( )Yao Chen1,3Jeffrey Penfold3Peixun Li3Rongliang Wu4( )Yilin Wang1,2( )
CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry,Beijing 100190 China
University of Chinese Academy of SciencesBeijing 100049 China
ISIS STFC Rutherford Appleton Laboratory Chilton DidcotOxon OX11 0QX UK
College of Material Science and Engineering State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua UniversityShanghai 201620 China

Abstract

The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life. Prior to the evolution of complex cellular machinery, spontaneous protocell membrane evolution results from the intrinsic physicochemical properties of simple molecules under specific environmental conditions. Here, we report the evolution of the morphology of cell-sized model protocell membranes from giant vesicles to pearling and helical nanostructures, resembling morphologies of eukaryocytes, nostoc, and spirilla. This evolution occurs in a single binary aqueous system composed of an achiral single-chain amphiphile and a biogenic polyamine (spermidine or spermine) upon evaporating water, feeding amphiphiles, or increasing pH in response to various primitive fluctuating conditions. In contrast, nonbiogenic polyamines (triamine, triethylenetetramine, and hexamethyltriethylenetetramine) with slight differences in the number of methylene groups or protonated amine groups do not induce such a kind of evolution. The evolution of the shape transformation strongly relies on the balance between electrostatic attraction and hydrogen bonding, attributed to the odd/even effect of polyamines in the assembly. Strikingly, both pearling and helical structures emerge from multilamellar vesicles undergoing different processes, where the helix shows stronger permeability and encapsulation capability due to its multicompartmentalized structure. Thus, subtle adjustment of weak intramolecular interactions not only yields significant changes in the morphological evolution of protocell membranes but also brings new insights into the natural inevitability of biogenic small molecules.

Keywords: self-assembly, amphiphile, protocell membrane, pearling and helical nanostructures, morphology evolution, biogenic polyamine

References(71)

1

Szostak, J. W.; Bartel, D. P.; Luisi, P. L. Synthesizing life. Nature 2001, 409, 387-390.

2

Dzieciol, A. J.; Mann, S. Designs for life: Protocell models in the laboratory. Chem. Soc. Rev. 2012, 41, 79-85.

3

Hanczyc, M. M.; Fujikawa, S. M.; Szostak, J. W. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 2003, 302, 618-622.

4

Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic systems chemistry: New perspectives for the origins of life. Chem. Rev. 2014, 114, 285-366.

5

Mann, S. The origins of life: Old problems, new chemistries. Angew. Chem., Int. Ed. 2013, 52, 155-162.

6

Dewey, D. C.; Strulson, C. A.; Cacace, D. N.; Bevilacqua, P. C.; Keating, C. D. Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nat. Commun. 2014, 5, 4670.

7

Schwille, P. How simple could life be? Angew. Chem., Int. Ed. 2017, 56, 10998-11002.

8

Bhattacharya, A.; Brea, R. J.; Niederholtmeyer, H.; Devaraj, N. K. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat. Commun. 2019, 10, 300.

9

Shi, J. Y.; Clayton, C.; Tian, B. Z. Nano-enabled cellular engineering for bioelectric studies. Nano Res. 2020, 13, 1214-1227.

10

Dora Tang, T. Y.; Rohaida Che Hak, C.; Thompson, A. J.; Kuimova, M. K.; Williams, D. S.; Perriman, A. W.; Mann, S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014, 6, 527-533.

11

Schreiber, A.; Huber, M. C.; Schiller, S. M. Prebiotic protocell model based on dynamic protein membranes accommodating anabolic reactions. Langmuir 2019, 35, 9593-9610.

12

Garenne, D.; Beven, L.; Navailles, L.; Nallet, F.; Dufourc, E. J.; Douliez, J. P. Sequestration of proteins by fatty acid coacervates for their encapsulation within vesicles. Angew. Chem., Int. Ed. 2016, 55, 13475-13479.

13

Deamer, D. Membranes and the origin of life: A century of conjecture. J. Mol. Evol. 2016, 83, 159-168.

14

Milshteyn, D.; Damer, B.; Havig, J.; Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 2018, 8, 11.

15

de Souza, T. P.; Bossa, G. V.; Stano, P.; Steiniger, F.; May, S.; Luisi, P. L.; Fahr, A. Vesicle aggregates as a model for primitive cellular assemblies. Phys. Chem. Chem. Phys. 2017, 19, 20082-20092.

16

Bhattacharya, A.; Devaraj, N. K. Tailoring the shape and size of artificial cells. ACS Nano 2019, 13, 7396-7401.

17

Zhu, T. F.; Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 2009, 131, 5705-5713.

18

Budin, I.; Debnath, A.; Szostak, J. W. Concentration-driven growth of model protocell membranes. J. Am. Chem. Soc. 2012, 134, 20812- 20819.

19

Zhu, T. F.; Adamala, K.; Zhang, N.; Szostak, J. W. Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc. Natl. Acad. Sci. USA 2012, 109, 9828-9832.

20

Hentrich, C.; Szostak, J. W. Controlled growth of filamentous fatty acid vesicles under flow. Langmuir 2014, 30, 14916-14925.

21

Jin, L.; Kamat, N. P.; Jena, S.; Szostak, J. W. Fatty acid/phospholipid blended membranes: A potential intermediate state in protocellular evolution. Small 2018, 14, 1704077.

22

Budin, I.; Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl. Acad. Sci. USA 2011, 108, 5249-5254.

23

Chen, Z. D.; Chen, Y.; Zhu, L. Y.; Fan, Y. X.; Wang, Y. L. Partition and solubilization of phospholipid vesicles by noncovalently constructed oligomeric-like surfactants. Langmuir 2020, 36, 8733-8744.

24

Mansy, S. S.; Schrum, J. P.; Krishnamurthy, M.; Tobé, S.; Treco, D. A.; Szostak, J. W. Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008, 454, 122-125.

25

Izgu, E. C.; Björkbom, A.; Kamat, N. P.; Lelyveld, V. S.; Zhang, W. C.; Jia, T. Z.; Szostak, J. W. N-carboxyanhydride-mediated fatty acylation of amino acids and peptides for functionalization of protocell membranes. J. Am. Chem. Soc. 2016, 138, 16669-16676.

26

Wright, T. H.; Giurgiu, C.; Zhang, W.; Radakovic, A.; O'Flaherty, D. K.; Zhou, L. J.; Szostak, J. W. Prebiotically plausible "patching" of RNA backbone cleavage through a 3'-5' pyrophosphate linkage. J. Am. Chem. Soc. 2019, 141, 18104-18112.

27

Singh, S. P.; Häder, D.; Sinha, R. P. Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Res. Rev. 2010, 9, 79-90.

28

Prasad, A.; Alizadeh, E. Cell form and function: Interpreting and controlling the shape of adherent cells. Trends Biotechnol. 2019, 37, 347-357.

29

Chaiyasitdhi, A.; Miphonpanyatawichok, W.; Riehle, M. O.; Phatthanakun, R.; Surareungchai, W.; Kundhikanjana, W.; Kuntanawat, P. The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis. PLoS One 2018, 13, e0196383.

30

Thomas, J. A.; Rana, F. R. The influence of environmental conditions, lipid composition, and phase behavior on the origin of cell membranes. Orig. Life Evol. Biosph. 2007, 37, 267-285.

31

Singh, S. P.; Montgomery, B. L. Determining cell shape: Adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 2011, 19, 278-285.

32

Kaplan-Levy, R. N.; Hadas, O.; Summers, M. L.; Rücker, J.; Sukenik, A. Akinetes: Dormant cells of cyanobacteria. In Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol. 21. Lubzens, E.; Cerda, J.; Clark, M., Eds.; Springer: Heidelberg, Berlin, 2010; pp 5-27.

DOI
33

Leaver, M.; Domínguez-Cuevas, P.; Coxhead, J. M.; Daniel, R. A.; Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457, 849-853.

34

Young, K. D. Bacterial morphology: Why have different shapes? Curr. Opin. Microbiol. 2007, 10, 596-600.

35

Ehrenfreund, P.; Rasmussen, S.; Cleaves, J.; Chen, L. H. Experimentally tracing the key steps in the origin of life: The aromatic world. Astrobiology 2006, 6, 490-520.

36

Maurer, S. E.; Deamer, D. W.; Boncella, J. M.; Monnard, P. A. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 2009, 9, 979-987.

37

Groen, J.; Deamer, D. W.; Kros, A.; Ehrenfreund, P. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig. Life Evol. Biosph. 2012, 42, 295-306.

38

Yu, Y.; Granick, S. Pearling of lipid vesicles induced by nanoparticles. J. Am. Chem. Soc. 2009, 131, 14158-14159.

39

Andes-Koback, M.; Keating, C. D. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 2011, 133, 9545-9555.

40

Pernpeintner, C.; Frank, J. A.; Urban, P.; Roeske, C. R.; Pritzl, S. D.; Trauner, D.; Lohmüller, T. Light-controlled membrane mechanics and shape transitions of photoswitchable lipid vesicles. Langmuir 2017, 33, 4083-4089.

41

Bhatia, T.; Christ, S.; Steinkühler, J.; Dimova, R.; Lipowsky, R. Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter 2020, 16, 1246-1258.

42

Nakashima, N.; Asakuma, S.; Kunitake, T. Optical microscopic study of helical superstructures of chiral bilayer membranes. J. Am. Chem. Soc. 1985, 107, 509-510.

43

Yanagawa, H.; Ogawa, Y.; Furuta, H.; Tsuno, K. Spontaneous formation of superhelical strands. J. Am. Chem. Soc. 1989, 111, 4567-4570.

44

Itojima, Y.; Ogawa, Y.; Tsuno, K.; Handa, N.; Yanagawa, H. Spontaneous formation of helical structures from phospholipid- nucleoside conjugates. Biochemistry 1992, 31, 4757-4765.

45

Walde, P. Surfactant assemblies and their various possible roles for the origin(s) of life. Orig. Life Evol. Biosph. 2006, 36, 109-150.

46

Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 2016, 116, 13752-13990.

47

Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589- 5604.

48

Qiao, F. L.; Wang, M. N.; Liu, Z.; Fan, Y. X.; Wang, Y. L. Transitions in the molecular configuration and aggregates for mixtures of a star-shaped hexameric cationic surfactant and a monomeric anionic surfactant. Chem. Asian J. 2016, 11, 2763-2772.

49

Kornmueller, K.; Lehofer, B.; Leitinger, G.; Amenitsch, H.; Prassl, R. Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures. Nano Res. 2018, 11, 913-928.

50

Chen, Z. D.; Penfold, J.; Li, P. X.; Doutch, J.; Fan, Y. X.; Wang, Y. L. Effects of length and hydrophilicity/hydrophobicity of diamines on self-assembly of diamine/SDS gemini-like surfactants. Soft Matter 2017, 13, 8980-8989.

51

Luo, S. Q.; Chen, Z. D.; Dong, Z. C.; Fan, Y. X.; Chen, Y.; Liu, B.; Yu, C. L.; Li, C. X.; Dai, H. Y.; Li, H. F. et al. Uniform spread of high- speed drops on superhydrophobic surface by live-oligomeric surfactant jamming. Adv. Mater. 2019, 31, 1904475.

52

Jin, J.; Yang, F.; Li, B.; Liu, D.; Wu, L. H.; Li, Y.; Gu, N. Temperature- regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Res. 2020, 13, 999-1007.

53

Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593.

54

Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell A. D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257-3273.

55

Yang, W. H.; Wu, R. L.; Kong, B.; Zhang, X. F.; Yang, X. Z. Molecular dynamics simulations of film rupture in water/surfactant systems. J. Phys. Chem. B 2009, 113, 8332-8338.

56

Miyamoto, S.; Kollman, P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952-962.

57

Cooper, G. W.; Onwo, W. M.; Cronin, J. R. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim. Cosmochim. Acta 1992, 56, 4109-4115.

58

Pegg, A. E. The function of spermine. IUBMB Life 2014, 66, 8-18.

59

Lenis, Y. Y.; Elmetwally, M. A.; Maldonado-Estrada, J. G.; Bazer, F. W. Physiological importance of polyamines. Zygote 2017, 25, 244-255.

60

Luzar, A.; Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 1996, 379, 55-57.

61

Luzar, A.; Chandler, D. Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 1996, 76, 928-931.

62

Yuan, H. Y.; Huang, C. J.; Zhang, S. L. Dynamic shape transformations of fluid vesicles. Soft Matter 2010, 6, 4571-4579.

63

Tsafrir, I.; Sagi, D.; Arzi, T.; Guedeau-Boudeville, M. A.; Frette, V.; Kandel, D.; Stavans, J. Pearling instabilities of membrane tubes with anchored polymers. Phys. Rev. Lett. 2001, 86, 1138-1141.

64

He, C. Q.; Han, Y. C.; Fan, Y. X.; Deng, M. L.; Wang, Y. L. Self- assembly of Aβ-based peptide amphiphiles with double hydrophobic chains. Langmuir 2012, 28, 3391-3396.

65

Ziserman, L.; Lee, H. Y.; Raghavan, S. R.; Mor, A.; Danino, D. Unraveling the mechanism of nanotube formation by chiral self- assembly of amphiphiles. J. Am. Chem. Soc. 2011, 133, 2511-2517.

66

Huang, X.; Li, C.; Jiang, S. G.; Wang, X. S.; Zhang, B. W.; Liu, M. H. Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322-1323.

67

Cui, Y.; Tao, D. L.; Huang, X. Y.; Lu, G. L.; Feng, C. Self- assembled helical and twisted nanostructures of a preferred handedness from achiral π-conjugated oligo(p-phenylenevinylene) derivatives. Langmuir 2019, 35, 3134-3142.

68

Zhou, L. L.; Fan, Y. X.; Liu, Z.; Chen, L.; Spruijt, E.; Wang, Y. L. A multiresponsive transformation between surfactant-based coacervates and vesicles. CCS Chem. 2021, 3, 358-366.

69

Vieregg, J. R.; Dora Tang, T. Y. Polynucleotides in cellular mimics: Coacervates and lipid vesicles. Curr. Opin. Colloid Interface Sci. 2016, 26, 50-57.

70

Martin, N. Dynamic synthetic cells based on liquid-liquid phase separation. ChemBioChem 2019, 20, 2553-2568.

71

Liu, B.; Fan, Y. X.; Li, H. F.; Zhao, W. W.; Luo, S. Q.; Wang, H.; Guan, B.; Li, Q. L.; Yue, J. L.; Dong, Z. C. et al. Control the entire journey of pesticide application on superhydrophobic plant surface by dynamic covalent trimeric surfactant coacervation. Adv. Funct. Mater. 2021, 31, 2006606.

File
12274_2021_3541_MOESM1_ESM.pdf (5.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 March 2021
Revised: 21 April 2021
Accepted: 26 April 2021
Published: 25 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21972149 and 21988102).

Return