AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control

Long Liu1,2,3Qiongfeng Shi1,2,3Chengkuo Lee1,2,3,4( )
Department of Electrical and Computer EngineeringNational University of Singapore, 4 Engineering Drive 3Singapore117576Singapore
Center for Intelligent Sensors and MEMSNational University of Singapore, Block E6 #05-11, 5 Engineering Drive 1Singapore117608Singapore
NUS Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123China
NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP)National University of SingaporeSingapore119077Singapore
Show Author Information

Graphical Abstract

Abstract

For human beings of different ages and physical abilities, the inherent balance control system is ubiquitous and active to prevent falling, especially in motion states. A hybridized electromagnetic-triboelectric nanogenerator (HETNG) is prepared to harvest biomechanical energy during human balance control processes and achieve significant monitoring functions. The HETNG is composed of a symmetrical pendulum structure and a cylinder magnet rolling inside. Four coils are divided into two groups which form into two electromagnetic generators (EMGs). Besides, two spatial electrodes attached to the inner wall constitute a freestanding mode triboelectric nanogenerator (TENG). With a rectification circuit, the HETNG presents a high output power with a peak value of 0.55 W at a load of 160 Ω. Along with human balance control processes during walking, the HETNG can harvest biomechanical energy at different positions on the trunk. Moreover, the HETNG applied in artificial limb has been preliminarily simulated with the positions on thigh and foot, for monitoring the actions of squat and stand up, and lifting the leg up and down. For the elder that walks slowly with a walking aid, the HETNG equipped on the walking aid can help to record the motions of forwarding and unexpected falling, which is useful for calling for help. This work shows the potential of biomechanical energy-driven HETNG for powering portable electronics and monitoring human motions, also shows significant concerns to people lacked action capability or disabled.

Electronic Supplementary Material

Download File(s)
12274_2021_3540_MOESM5_ESM.pdf (3.4 MB)

References

1

Ribière, P.; Grugeon, S.; Morcrette, M.; Boyanov, S.; Laruelle, S.; Marlair, G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 2012, 5, 5271-5280.

2

Halim, M. A.; Cho, H.; Park, J. Y. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manag. 2015, 106, 393-404.

3

Saha, C. R.; O'Donnell, T.; Wang, N.; McCloskey, P. Electromagnetic generator for harvesting energy from human motion. Sensor. Actuat. A: Phys. 2008, 147, 248-253.

4

Pillatsch, P.; Yeatman, E. M.; Holmes, A. S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensor. Actuat. A: Phys. 2014, 206, 178-185.

5

Siddiqui, S.; Lee, H. B.; Kim, D. I.; Duy, L. T.; Hanif, A.; Lee, N. E. An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Adv. Energy Mater. 2018, 8, 1701520.

6

Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

7

Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

8

Zou, Y. J.; Xu, J.; Fang, Y. S.; Zhao, X.; Zhou, Y. H.; Chen, J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021, 83, 105845.

9

Zhou, Z. H.; Weng, L.; Tat, T.; Libanori, A.; Lin, Z. M.; Ge, L. J.; Yang, J.; Chen, J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 2020, 14, 14126-14133.

10

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404-6411.

11

Zhu, J. X.; Zhu, M. L.; Shi, Q. F.; Wen, F.; Liu, L.; Dong, B. W.; Haroun, A.; Yang, Y. Q.; Vachon, P.; Guo, X. et al. Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2020, 2, e12058.

12

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250-2282.

13

Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

14

Pu, X. J.; Guo, H. Y.; Tang, Q.; Chen, J.; Feng, L.; Liu, G. L.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 2018, 54, 453-460.

15

Shi, Q. F.; Zhang, Z. X.; He, T. Y. Y.; Sun, Z. D.; Wang, B. J.; Feng, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609.

16

Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.

17

Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

18

Liu, L.; Shi, Q. F.; Ho, J. S.; Lee, C. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 2019, 66, 104167.

19

Liu, L.; Shi, Q. F.; Lee, C. A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 2020, 76, 105052.

20

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797-4805.

21

Yang, Y.; Zhang, H. L.; Liu, R. Y.; Wen, X. N.; Hou, T. C.; Wang, Z. L. Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 2013, 3, 1563-1568.

22

Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. et al. Triboelectric- electromagnetic hybrid generator for harvesting blue energy. Nano- Micro Lett. 2018, 10, 54.

23

Zhang, K. W.; Wang, Y. H.; Yang, Y. Structure design and performance of hybridized nanogenerators. Adv. Funct. Mater. 2019, 29, 1806435.

24

Chen, X. X.; Ren, Z. Y.; Han, M. D.; Wan, J.; Zhang, H. X. Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy 2020, 75, 104980.

25

Liu, H. C.; Fu, H. L.; Sun, L. N.; Lee, C.; Yeatman, E. M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sust. Energ. Rev. 2021, 137, 110473.

26

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668-3720.

27

Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human - Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.

28

Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521-3529.

29

Liu, L.; Tang, W.; Deng, C. R.; Chen, B. D.; Han, K.; Zhong, W.; Wang, Z. L. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 2018, 11, 3972-3978.

30

Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic- triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301-12310.

31

Salauddin, M.; Toyabur, R. M.; Maharjan, P.; Rasel, M. S.; Kim, J. W.; Cho, H.; Park, J. Y. Miniaturized springless hybrid nanogenerator for powering portable and wearable electronic devices from human-body-induced vibration. Nano Energy 2018, 51, 61-72.

32

Seol, M. L.; Han, J. W.; Park, S. J.; Jeon, S. B.; Choi, Y. K. Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package. Nano Energy 2016, 23, 50-59.

33

Salauddin, M.; Toyabur, R. M.; Maharjan, P.; Park, J. Y. High performance human-induced vibration driven hybrid energy harvester for powering portable electronics. Nano Energy 2018, 45, 236-246.

34

Maharjan, P.; Bhatta, T.; Cho, H.; Hui, X.; Park, C.; Yoon, S.; Salauddin, M.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications. Adv. Energy Mater. 2020, 10, 2002782.

35

Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272-3280.

36

Rahman, M. T.; Rana, S. M. S.; Salauddin, M.; Maharjan, P.; Bhatta, T.; Park, J. Y. Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 2020, 10, 1903663.

37

Maharjan, P.; Cho, H.; Rasel, M. S.; Salauddin, M.; Park, J. Y. A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy. Nano Energy 2018, 53, 213-224.

38

Maharjan, P.; Toyabur, R. M.; Park, J. Y. A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy 2018, 46, 383-395.

39

Yan, C.; Gao, Y. Y.; Zhao, S. L.; Zhang, S. L.; Zhou, Y. H.; Deng, W. L.; Li, Z. W.; Jiang, G.; Jin, L.; Tian, G. et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2020, 67, 104235.

40

Jiang, D. J.; Ouyang, H.; Shi, B. J.; Zou, Y.; Tan, P. C.; Qu, X. C.; Chao, S. Y.; Xi, Y.; Zhao, C. C.; Fan, Y. B. et al. A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics. InfoMat 2020, 2, 1191-1200.

41

Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226-2233.

42

Ren, X. H.; Fan, H. Q.; Wang, C.; Ma, J. W.; Lei, S. H.; Zhao, Y. W.; Li, H.; Zhao, N. S. Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy 2017, 35, 233-241.

43

Chung, J.; Yong, H.; Moon, H.; Duong, Q. V.; Choi, S. T.; Kim, D.; Lee, S. Hand-driven gyroscopic hybrid nanogenerator for recharging portable devices. Adv. Sci. 2018, 5, 1801054.

44

Hou, C.; Chen, T.; Li, Y. F.; Huang, M. J.; Shi, Q. F.; Liu, H. C.; Sun, L. N.; Lee, C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019, 63, 103871.

45

Chen, X.; Gao, L. X.; Chen, J. F.; Lu, S.; Zhou, H.; Wang, T. T.; Wang, A. B.; Zhang, Z. F.; Guo, S. F.; Mu, X. J. et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440.

46

Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

47

Bauby, C. E.; Kuo, A. D. Active control of lateral balance in human walking. J. Biomech. 2000, 33, 1433-1440.

48

Loram, I. D.; Lakie, M. Human balancing of an inverted pendulum: Position control by small, ballistic-like, throw and catch movements. J. Physiol. 2002, 540, 1111-1124.

49

Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6-18 years of age: A systematic review and meta-analysis. PLoS One 2019, 14, e0214434.

50

Le Huec, J. C.; Saddiki, R.; Franke, J.; Rigal, J.; Aunoble, S. Equilibrium of the human body and the gravity line: The basics. Eur. Spine J. 2011, 20, 558-563.

Nano Research
Pages 4227-4235
Cite this article:
Liu L, Shi Q, Lee C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Research, 2021, 14(11): 4227-4235. https://doi.org/10.1007/s12274-021-3540-7
Topics:

729

Views

40

Crossref

39

Web of Science

42

Scopus

4

CSCD

Altmetrics

Received: 02 February 2021
Revised: 19 April 2021
Accepted: 26 April 2021
Published: 01 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return